4,679 research outputs found
Stain Etching with Fe(III), V(V), and Ce(IV) to Form Microporous Silicon
Stain etchants made from (HF+V(2)O(5)) or (HF+FeCl(3)center dot 6H(2)O+HCl or H(2)SO(4)) exhibited virtually no initiation time before the formation of porous silicon. Etching with Fe(III) solutions for extended periods resulted in a unique dual layer structure that can reach a thickness \u3e10 mu m and exhibited not only red-orange but also green photoluminescence (PL). Etching with (CeF(4)+H(2)SO(4)) produced extremely uniform films. Visible PL was observed immediately after etching except for those films produced with (CeF(4)+H(2)SO(4)), which required several days of air exposure before bright and robust PL developed
Wet Etching of Pillar-Covered Silicon Surfaces: Formation of Crystallographically Defined Macropores
Silicon substrates exposed to laser ablation in a chemically reactive environment such as SF6 or HCl can experience spontaneous formation of conical pillars. We use these pillars as a template to define the dimensions and order of macropores produced by etching such substrates in aqueous solutions of KOH or tetramethylammonium hydroxide. The pillars anchor the sidewalls of the pores during etching, and the interpillar spacing controls the width of the pores. The macropores have crystallographically defined shapes for which we develop an explanation based on the kinetics of etching. Si(001) macropores can be etched such that they are rectangular with straight walls and an inverted pyramidal bottom. They have been etched as through holes, which is of interest for optical applications. On Si(111), there is a transition from hexagonal to triangular macropores that are all aligned in one direction. The Si(111) pores exhibit an optimum etch time before they begin to disappear. The behavior of the macropores is quite similar regardless of whether the pillars are produced by nanosecond or femtosecond lasers. Differences observed relate to the different initial structures (spacing and regularity) of these two different types of pillar-covered surfaces. (c) 2008 The Electrochemical Society
On the stochastic mechanics of the free relativistic particle
Given a positive energy solution of the Klein-Gordon equation, the motion of
the free, spinless, relativistic particle is described in a fixed Lorentz frame
by a Markov diffusion process with non-constant diffusion coefficient. Proper
time is an increasing stochastic process and we derive a probabilistic
generalization of the equation . A
random time-change transformation provides the bridge between the and the
domain. In the domain, we obtain an \M^4-valued Markov process
with singular and constant diffusion coefficient. The square modulus of the
Klein-Gordon solution is an invariant, non integrable density for this Markov
process. It satisfies a relativistically covariant continuity equation
On the modulation instability development in optical fiber systems
Extensive numerical simulations were performed to investigate all stages of
modulation instability development from the initial pulse of pico-second
duration in photonic crystal fiber: quasi-solitons and dispersive waves
formation, their interaction stage and the further propagation. Comparison
between 4 different NLS-like systems was made: the classical NLS equation, NLS
system plus higher dispersion terms, NLS plus higher dispersion and
self-steepening and also fully generalized NLS equation with Raman scattering
taken into account. For the latter case a mechanism of energy transfer from
smaller quasi-solitons to the bigger ones is proposed to explain the dramatical
increase of rogue waves appearance frequency in comparison to the systems when
the Raman scattering is not taken into account.Comment: 9 pages, 54 figure
Nonlinear optics of fibre event horizons
The nonlinear interaction of light in an optical fibre can mimic the physics
at an event horizon. This analogue arises when a weak probe wave is unable to
pass through an intense soliton, despite propagating at a different velocity.
To date, these dynamics have been described in the time domain in terms of a
soliton-induced refractive index barrier that modifies the velocity of the
probe. Here, we complete the physical description of fibre-optic event horizons
by presenting a full frequency-domain description in terms of cascaded
four-wave mixing between discrete single-frequency fields, and experimentally
demonstrate signature frequency shifts using continuous wave lasers. Our
description is confirmed by the remarkable agreement with experiments performed
in the continuum limit, reached using ultrafast lasers. We anticipate that
clarifying the description of fibre event horizons will significantly impact on
the description of horizon dynamics and soliton interactions in photonics and
other systems.Comment: 7 pages, 5 figure
A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye.
BMP-7/OP-1, a member of the transforming growth factor-beta (TGF-beta) family of secreted growth factors, is expressed during mouse embryogenesis in a pattern suggesting potential roles in a variety of inductive tissue interactions. The present study demonstrates that mice lacking BMP-7 display severe defects confined to the developing kidney and eye. Surprisingly, the early inductive tissue interactions responsible for establishing both organs appear largely unaffected. However, the absence of BMP-7 disrupts the subsequent cellular interactions required for their continued growth and development. Consequently, homozygous mutant animals exhibit renal dysplasia and anophthalmia at birth. Overall, these findings identify BMP-7 as an essential signaling molecule during mammalian kidney and eye development
Uncertainties in life cycle greenhouse gas emissions from U.S. beef cattle
Beef cattle feedlots are estimated to contribute 26% of U.S. agricultural greenhouse gas (GHG) emissions, and future climate change policy could target reducing these emissions. Life cycle assessment (LCA) of GHG emissions from U.S. grain-fed beef cattle was conducted based on industry statistics and previous studies to identify the main sources of uncertainty in these estimations. Uncertainty associated with GHG emissions from indirect land use change, pasture soil emissions (e.g. soil carbon sequestration), enteric fermentation from cattle on pasture, and methane emissions from feedlot manure, respectively, contributed the most variability to life cycle GHG emissions from beef production. Feeding of coproducts from ethanol production was estimated to reduce life cycle emissions by 1.7%, but could increase emissions by 0.6â2.0% with higher feeding rates. Monte Carlo simulation found a range of life cycle emissions from 2.52 to 9.58 kg CO2 per kg live weight (5th and 95th percentiles), with a calculated average of 8.14, which is between recent estimates. Current methods used by the U.S. Environmental Protection Agency (EPA) associated with beef production in feedlots were found to account for only 3â20% of life cycle GHG emissions.
Includes Supplementary Information/Appendix A
- âŠ