251 research outputs found

    Measurement of proton and neutron spectra on satellites of the Kosmos series

    Get PDF
    Proton and neutron spectra as measured by Cosmos satellites to determine cosmic radiation dose

    Dosimetric investigations of cosmic radiation aboard the Kosmos-936 AES (joint Soviet-American experiment K-206)

    Get PDF
    The Soviet and American parts of the experiment are described separately. Particular attention was given to the following problems: placement of the detectors; study of neutron radiation within the biosatellite; and studies of fragmentation of heavy nuclei on accelerators. Unified methods were developed for the calibration of Soviet and American detectors

    Experiment K-6-24, K-6-25, K-6-26. Radiation dosimetry and spectrometry

    Get PDF
    Radiation experiments flown by the University of San Francisco on the Cosmos 1887 spacecraft were designed to measure the depth dependence of both total dose and heavy particle flux, dose and dose equivalent, down to very thin shielding. Three experiments were flown and were located both inside and outside the Cosmos 1887 spacecraft. Tissue absorbed dose rates of 264 to 0.028 rad d(-1) under shielding of 0.013 to 3.4 g/sq cm of (7)LiF were found outside the spacecraft and 0.025 rad d(-1) inside. Heavy particle fluxes of 3.43 to 1.03 x 10 to the minus 3rd power cm -2 sub s -1 sub sr -1 under shielding of 0.195 to 1.33 g/sq cm plastic were found outside the spacecraft and 4.25 times 10 to the minus 4th power cm -2 sub s -1 sub sr -1 inside (LET infinity H2O greater than or equal to 4 keV/micron m). The corresponding heavy particle dose equivalent rates outside the spacecraft were 30.8 to 19.8 mrem d(-1) and 11.4 mrem d(-1) inside. The large dose and particle fluxes found at small shielding thicknesses emphasize the importance of these and future measurements at low shielding, for predicting radiation effects on space materials and experiments where shielding is minimal and on astronauts during EVA. The Cosmos 1887 mission contained a variety of international radiobiological investigations to which the measurements apply. The high inclination orbit (62 degrees) of this mission provided a radiation environment which is seldom available to U.S. investigators. The radiation measurements will be compared with those of other research groups and also with those performed on the Shuttle, and will be used to refine computer models employed to calculate radiation exposures on other spacecraft, including the Space Station

    Radiation experiments on Cosmos 2044: K-7-41, parts A, B, C, D, E

    Get PDF
    The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 deg and attitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10(exp -4) and 3.05 x 10(exp -4)/sq cm/s/sr, of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(sub infinity)-H2O is greater than or equal to 4 keV/micron. Neutron measurements yielded 0.018 mrem/d in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra were compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 deg) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCRs, and higher LET particles, in the heavy particle fluxes

    Dependence of the intensities of ultrasonic sidebands in the Mössbauer spectrum on the statistics of the acoustic field

    Get PDF
    The acoustic modulation of γ quanta is analyzed with regard for dissipation of the energy of the excited mode through resonance (having the acoustic frequency) modes. Given definite assumptions, the Rayleigh-Rice distribution function previously introduced phenomenologically is obtained for the oscillation amplitudes. It is proposed that the intensities of the ultrasonic sidebands be expressed in terms of the parameters m and σ, which are valid for any degree of sound coherence. The results of numerical computations are given. © 1980 Plenum Publishing Corporation

    Synthesis and reactivity of 5-polyfluoroalkyl-5-deazaalloxazines

    Full text link
    Reaction of 6-arylamino-1,3-dialkyluracils with anhydrides of polyfluorocarboxylic acids in the presence of pyridine and subsequent cyclization with concentrated H2SO4 gave the corresponding 1,3-dialkyl-5-(polyfluoroalkyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-diones (5-polyfluoroalkyl-5-deazaalloxazines). The reactivity of these compounds towards nucleophilic reagents, such as sodium cyanoborohydride, acetophenone, nitromethane, potassium cyanide, indole and p-thiocresol, as well as Suzuki and Sonogashira couplings are described. The nucleophilic addition takes place at the 5-position of the 5-deazaalloxazine system and is in many cases irreversible to give 5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione derivatives in good to excellent yields.© 2013 The Royal Society of Chemistry

    Materials of the final reports on the joint Soviet-American experiment on the Kosmos-936 biosatellite

    Get PDF
    Biological experiments onboard the Kosmos-936 investigated the effect of weightlessness on the basic components of cells, the genetic structure and energy apparatus. Genetic studies were made on the Drosophila melanogaster. Experiments were made on higher vegetation and fungi as well. The results indicate that weightlessness cannot be the principal barrier for normal development. An experiment with ectopic osteogenesis in weightlessness was carried out. Measurements were made of cosmic radiation inside and outside the biosatellite
    corecore