149 research outputs found

    Radiation experiments on Cosmos 2044: K-7-41, parts A, B, C, D, E

    Get PDF
    The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 deg and attitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10(exp -4) and 3.05 x 10(exp -4)/sq cm/s/sr, of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(sub infinity)-H2O is greater than or equal to 4 keV/micron. Neutron measurements yielded 0.018 mrem/d in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra were compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 deg) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCRs, and higher LET particles, in the heavy particle fluxes

    Characteristics of alpha projectile fragments emission in interaction of nuclei with emulsion

    Full text link
    The properties of the relativistic alpha fragments produced in interactions of 84^Kr at around 1 A GeV in nuclear emulsion are investigated. The experimental results are compared with the similar results obtained from various projectiles with emulsion interactions at different energies. The total, partial nuclear cross-sections and production rates of alpha fragmentation channels in relativistic nucleus-nucleus collisions and their dependence on the mass number and initial energy of the incident projectile nucleus are investigated. The yields of multiple alpha fragments emitted from the interactions of projectile nuclei with the nuclei of light, medium and heavy target groups of emulsion-detector are discussed and they indicate that the projectile-breakup mechanism seems to be free from the target mass number. It is found that the multiplicity distributions of alpha fragments are well described by the Koba-Nielsen-Olesen (KNO) scaling presentation. The mean multiplicities of the freshly produced newly created charged secondary particles, normally known as shower and secondary particles associated with target in the events where the emission of alpha fragments were accompanied by heavy projectile fragments having Z value larger than 4 seem to be constant as the alpha fragments multiplicity increases, and exhibit a behavior independent of the alpha fragments multiplicity.Comment: 33 pages, 8 figures and 3 tables (in press
    corecore