79 research outputs found

    Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2

    Get PDF
    Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2. Subjecting human osteoblastic Saos-2 cells to strain by four point bending down-regulates their expression of SOST and RANKL without altering RUNX2 expression. RUNX2 knockdown increases basal SOST expression, but does not alter SOST down-regulation following strain. Conversely, RUNX2 knockdown does not alter basal RANKL expression, but prevents its down-regulation by strain. Chromatin immunoprecipitation revealed RUNX2 occupies a region of the RANKL promoter containing a consensus RUNX2 binding site and its occupancy of this site decreases following strain. The expression of epigenetic acetyl and methyl writers and readers was quantified by RT-qPCR to investigate potential epigenetic bases for this change. Strain and RUNX2 knockdown both down-regulate expression of the bromodomain acetyl reader BRD2. BRD2 and RUNX2 co-immunoprecipitate, suggesting interaction within regulatory complexes, and BRD2 was confirmed to interact with the RUNX2 promoter. BRD2 also occupies the RANKL promoter and its occupancy was reduced following exposure to strain. Thus, RUNX2 may contribute to bone remodeling by suppressing basal SOST expression, while facilitating the acute strain-induced down-regulation of RANKL through a mechanosensitive epigenetic loop involving BRD2

    Defining the baseline transcriptional fingerprint of rabbit hamstring autograft

    Get PDF
    Anterior cruciate ligament (ACL) injuries are common and of high relevance given their significant effects on patient function, quality of life, and posttraumatic arthritis. To date, investigators have reported on the expression of genes classically associated with tendon and ligament reconstruction, including decorin (DCN) and collagen type 1 (COL1A1 and COL1A2). However, the transcriptional fingerprint for hamstring tendons, one of the most common autografts used for ACLR, remains to be determined. The purpose of this study was to characterize the baseline transcriptional state of semitendinosus autografts in a rabbit model for ACLR and to employ such characterization to guide scientifically-driven target gene selection for future analyses. Next generation RNA sequencing was performed on whole semitendinosus autografts from four New Zealand White rabbits (mean age: 193 ± 0 days, mean weight: 2.78 kg ± 0.15 kg) and subsequently analyzed using gene enrichment and protein-protein interaction network analysis. Decorin, Secreted Protein Acidic and Cysteine Rich (SPARC), Collagen type 1, and Proline and Arginine Rich End Leucine Rich Repeat Protein (PRELP) and were determined to be the highest expressed genes with tendon-associated ontology. These results strengthen the association between genes such as DCN, COL1A1, and COL1A2 and tendon tissues as well as provide the novel addition of further high-expression, tendon characteristic genes such as SPARC and PRELP to provide guidance as to which molecules serve as high-signal candidates for future ACL research. In addition, this paper provides open-access to the expression fingerprint of hamstring autograft for ACLR in New Zealand White rabbits, thus providing a readily-accessible collaborative reference, in alignment with ethical animal research principles

    Bovine Colostrum Supplementation and Bone Health: a Pilot Study

    Get PDF
    Research has shown the positive effects of some bovine colostrum components in bone cells; for instance, lactoferrin is reported to stimulate osteoblast proliferation and inhibit osteoclast activity in cell cultures. However, whether bovine colostrum as a whole can induce bone mass gains in osteoporotic bones is relatively unclear. The aim of this study was to investigate the effects of bovine colostrum supplementation in ovariectomized-induced bone loss (OVX) rats. Methods: Twenty-seven-month-old female Wister rats (n=16) were randomly assigned to the following two groups: 1) a healthy control (non-OVX) with no supplementation, and 2) a OVX with bovine colostrum supplementation (0.5g/day; oral consumption). After 5 months supplementation, bone microstructure was scanned using micro-CT (right tibia). Bone formation markers (serum: pre-and post supplementation) were analysed (alkaline phosphatase and osteocalcin) by ECLIA. The study was approved by the National Ethics Committee for the Use of Animals in Research (ORBEA). Results: No significant differences were found between groups in serum alkaline phosphatase either before or after supplementation (p>0.05). Serum osteocalcin significantly increased post-supple-mentation in the OVX compared to pre-supplementation (pre: 11.32+/-1.61; post: 12.45+/-1.21μg/L, p0.05). Trabecular bone mineral content (BMC), trabecular thickness, cortical bone mineral density (BMD) and cortical BMC were similar between groups after supplementation (p>0.05). However, OVX group revealed significantly higher trabecular porosity (5.6%, p<0.01), trabecular separation (36.3%, p<0.01), and cortical porosity (8.0%, p<0.01) compared to the healthy control post-supplementation. Conclusion: Bovine colostrum seems to preserve bone mass of OVX by stimulating bone formation. However, these positive effects seem not to be sufficient to restore bone micro-architecture in the OVX group, possibly because the administrated dose of bovine colostrum was not sufficient for OVX to catch-up healthy rats in terms of trabecular and cortical porosity. The potential therapeutic use of bovine colostrum for osteoporosis deserves further investigation

    Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production

    Get PDF
    Background: Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). Methods: In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. Results: We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Conclusions: Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria

    Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affectcartilage development

    Get PDF
    Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the roleof Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre,Osx1-Cre, and Col2a1-Cre drivers, respectively. Wild-type and conditional knockout mice were phenotypically assessed by grossmorphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated usingRNA-sequencing, histologic evaluation, and western blotting. Aged mice with Ezh2 deficiency were also evaluated for prematuredevelopment of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age, although caused no other gross developmentaleffects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3lysine 27 (H3K27me3) and altered differentiation in vitro. RNA-seq analysis revealed enrichment of an osteogenic gene expressionprofile in Ezh2 deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes withoutinducing excessive hypertrophy or premature osteoarthritis in vivo. In summary, loss of Ezh2 reduced H3K27me3 levels, increased expression of osteogenic genes in chondrocytes, and resulted ina transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondralossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage-commitment

    Molecular characterization of human osteoblast-derived extracellular vesicle mRNA using next-generation sequencing

    Get PDF
    Extracellular vesicles (EVs) are membrane-bound intercellular communication vehicles that transport proteins, lipids and nucleic acids with regulatory capacity between cells. RNA profiling using microarrays and sequencing technologies has revolutionized the discovery of EV-RNA content, which is crucial to understand the molecular mechanism of EV function. Recent studies have indicated that EVs are enriched with specific RNAs compared to the originating cells suggestive of an active sorting mechanism. Here, we present the comparative transcriptome analysis of human osteoblasts and their corresponding EVs using next-generation sequencing. We demonstrate that osteoblast-EVs are specifically depleted of cellular mRNAs that encode proteins involved in basic cellular activities, such as cytoskeletal functions, cell survival and apoptosis. In contrast, EVs are significantly enriched with 254 mRNAs that are associated with protein translation and RNA processing. Moreover, mRNAs enriched in EVs encode proteins important for communication with the neighboring cells, in particular with osteoclasts, adipocytes and hematopoietic stem cells. These findings provide the foundation for understanding the molecular mechanism and function of EV-mediated interactions between osteoblasts and the surrounding bone microenvironment

    Osteoblasts secrete miRNA-containing extracellular vesicles that enhance expansion of human umbilical cord blood cells

    Get PDF
    Osteolineage cells represent one of the critical bone marrow niche components that support maintenance of hematopoietic stem and progenitor cells (HSPCs). Recent studies demonstrate that extracellular vesicles (EVs) regulate stem cell development via horizontal transfer of bioactive cargo, including microRNAs (miRNAs). Using next-generation sequencing we show that human osteoblast-derived EVs contain highly abundant miRNAs specifically enriched in EVs, including critical regulators of hematopoietic proliferation (e.g., miR-29a). EV treatment of human umbilical cord blood-derived CD34 + HSPCs alters the expression of candidate miRNA targets, such as HBP1, BCL2 and PTEN. Furthermore, EVs enhance proliferation of CD34 + cells and their immature subsets in growth factor-driven ex vivo expansion cultures. Importantly, EV-expanded cells retain their differentiation capacity in vitro and successfully engraft in vivo. These discoveries reveal a novel osteoblast-derived EV-mediated mechanism for regulation of HSPC proliferation and warrant consideration of EV-miRNAs for the development of expansion strategies to treat hematological disorders

    Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT

    Get PDF
    Development of high throughput analytical methods has given physicians the potential access to extensive and patient-specific data sets, such as gene sequences, gene expression profiles or metabolite footprints. This opens for a new approach in health care, which is both personalized and based on system-level analysis. Genome-scale metabolic networks provide a mechanistic description of the relationships between different genes, which is valuable for the analysis and interpretation of large experimental data-sets. Here we describe the generation of genome-scale active metabolic networks for 69 different cell types and 16 cancer types using the INIT (Integrative Network Inference for Tissues) algorithm. The INIT algorithm uses cell type specific information about protein abundances contained in the Human Proteome Atlas as the main source of evidence. The generated models constitute the first step towards establishing a Human Metabolic Atlas, which will be a comprehensive description (accessible online) of the metabolism of different human cell types, and will allow for tissue-level and organism-level simulations in order to achieve a better understanding of complex diseases. A comparative analysis between the active metabolic networks of cancer types and healthy cell types allowed for identification of cancer-specific metabolic features that constitute generic potential drug targets for cancer treatment
    corecore