399 research outputs found

    The bacterial component of the oceanic euphotic zone

    Get PDF
    Bacteria in the open sea remote from land are sustained strictly on local sources of organic production which should make understanding their nutrition and growth regulation easier than in nearshore systems, estuaries and lakes. Until now, a paucity of data from geographically isolated oceanic sites prevented ready :interpretation. In the past decade investigation of bacterial properties in oceanic systems has increased rapidly, stimulated in part by large oceanographic programs like the Joint Global Ocean Flux Study. Here I review comprehensive investigations of bacterial biomass and production dynamics in the subarctic north Atlantic and north Pacific, oligotrophic gyres in both oceans, upwelling provinces in the equatorial Pacific and northwest Arabian Sea, and in the Ross Sea, Antarctica. Euphotic zone bacterial stocks are remarkably similar across all except the last regime, averaging about 1 g C m(-2). Production and growth rates vary more widely, suggesting independent regulation of biomass and production. The seasonal to annual mean ratio of bacterial to primary production is usually below 20%. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved

    Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea

    Get PDF
    Lability of the bulk dissolved organic carbon (DOG) pool and the amount available to bacterioplankton on short time scales (hours to days) were examined in oligotrophic Sargasso Sea water (near Bermuda). We examined bacterial growth and DOC utilization using seawater culture methodology in combination with measurements of bacterial abundance, cell volume, and DOC. Bulk DOC concentrations were determined by high temperature combustion (HTC) analysis, which proved to be a sensitive method for detecting small changes in natural concentration of DOG. Measurable bacterial growth and DOC utilization only occurred in unamended cultures when initial DDC concentrations were greater than observed in the mixed layer at the Bermuda Atlantic Time Series station. In unamended cultures exhibiting growth, approximately 6 to 7% of the bulk pool was available and considered a labile component. This material was utilized with an average bacterial growth efficiency (BGE) of 14 +/- 6%. Nutrient enrichment experiments were also conducted with NH4, PO4, glucose, dissolved free amino acid (DFAA) and algal lysate additions. In all experiments bacterial growth rates, bacterial carbon production, and BGE increased with the addition of organic carbon supplements. There were no enhancements of bacterial production or DOC utilization above the control when inorganic nutrients were added, indicating that at the lime these experiments were conducted bacterial growth was limited by available carbon

    Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean

    Get PDF
    Organic material entering the oceanic mesopelagic zone may either reenter the euphotic zone or settle into deeper waters. Therefore it is important to know about mechanisms and efficiency of substrate conversion in this water layer. Bacterial biomass, bacteria secondary production (BSP). extra­cellular peptidase activity (EPA) and particulate organic nitrogen (PON) were measured in vertical pro­files of the North Atlantic (46° N 18° W; 57° N 23° W) during the Joint Global Ocean Flux Study (JGOFS) cruise in May 1989. The magnitude of these parameters decreased differently with depth. The strong­est decreases were observed for bacterial production (3H-thymidine incorporation) and peptide turn­over (using the substrate analog leucine-methylcoumarinylamide). Bacterial biomass and peptidase potential activity were not reduced as much in the mesopelagic zone. Peptidase potential per unit cell biomass of mesopelagic bacteria was 2 to 3 times higher than that of bacteria in surface water. Nevertheless bacterial growth at depth was slow, due to slow actual hydrolysis. Values of theoretical PON hydrolysis were calculated from PON measurements and protein hydrolysis rates. These corre­sponded well to bacterial production rates, and the degree of correspondence increased from a factor of 0.63 (PON hydrolysis/ESP) in the mixed surface layer to 0.87 in the mesopelagic zone. Thus we hypothesized an effective coupling between particle hydrolysis and uptake of hydrolysate by bacteria, which depletes the deeper water of easily degradable substrates as hydrolysates usually are. The low enzymatic PON turnover rate of 0.04 d- 1 in the subeuphotic zone suggests that residence time of parti­cles within a depth stratum may be important for its contribution to export. storage and recycling of organic matter

    Bacterial growth in experimental plankton assemblages and seawater cultures from the Phaeocystis antarctica bloom in the Ross Sea, Antarctica

    Get PDF
    A series of seawater culture experiments was carried out during the Phaeocystis antarctica bloom in the Ross Sea polynya (76.5 degrees S, 180 degrees W; November to December 1994 and December 1995 to January 1996) to examine bacterioplankton growth and derive empirical factors for estimating bacterial production rates. Bacterial growth was exponential over 3 to 10 d in all experiments, at rates of ca 0.1 to 0.7 d(-1), even in persistently cold waters (-2 to + 1 degrees C). Growth rates were lower in the early part of the bloom (early to mid-November) and highest during the period of peak primary productivity (2 to 4 g C m(-2) d(-1) in late November through December). Apparent lag phases in the growth curves lasting 1 to 7 d could be accounted for mathematically by subpopulations in the bacterial assemblages growing exponentially at different rates, with no need to invoke inactive, nondividing or nonviable populations. Lags were absent during the period of peak primary production, suggesting adaptation of the bacteria to ambient DOM. Growth was not stimulated by small temperature increases (Delta+2 to 4 degrees C), and was not balanced by removal processes in untreated \u27whole\u27 water samples. Growth rates were broadly similar to other directly observed bacterial growth rates in the Antarctic and did not appear to differ from rates in warmer waters. Conversion factors for thymidine and leucine averaged 8 and 0.8 x 10(17) cells mol(-1), respectively, not dissimilar to estimates from temperate waters. These findings suggest that bacteria were growing actively in 0 to -2 degrees C waters under rich bloom conditions, and lend strong sup port to the hypothesis that bacterioplankton metabolism controls DOC accumulation in Antarctic waters, at least at the low rates of DOM supply we infer from field and experimental observations. Bacterioplankton responded within 10 to 20 d to the evolving P. antarctica bloom and did not appear to behave substantially differently from lower latitude bloom systems

    A nitrogen-based model of plankton dynamics in the oceanic mixed layer

    Get PDF
    As a first step toward the development of coupled, basin scale models of ocean circulation and biogeochemical cycling, we present a model of the annual cycles of plankton dynamics and nitrogen cycling in the oceanic mixed layer. The model is easily modified and runs in FORTRAN on a personal computer. In our initial development and exploration of the model\u27s behavior we have concentrated on modeling the annual cycle at Station S near Bermuda using seven compartments (Phytoplankton, Zooplankton, Bacteria, Nitrate, Ammonium, Dissolved organic nitrogen and Detritus). This choice of compartments and the attendant flows (fluxes or intercompartmental exchanges) permits a functional distinction between new and regenerated production. We have examined over 200 different runs and carried out sensitivity analyses. Results of model runs with detrital sinking rates of 1 and 10 meters per day are presented. In these runs, the phytoplankton biomass-specific mortality rate was varied to adjust the annual net primary production (NPP) for the mixed layer to a value equivalent to 45 gC m−2, which was calculated from the literature. Modelled cycles of zooplankton and bacterial stocks, and magnitudes of their annual production which cannot be validated due to sparse observations, are driven by the amplitude of the spring bloom and by changes in foodweb structure. Most, but not all model runs exhibit a spring bloom triggered by the winter depression of zooplankton stocks and the vernal increase in solar irradiance. The bloom is driven by nitrate entrained into the mixed layer during the wintertime deepening of the mixed layer. Following the shoaling of the pycnocline to ca 20 m, nitrate supply is limited to diffusional inputs, nitrate stocks are depleted, and regenerated production exceeds new production. The resulting cycles of new and regenerated production produce an annual cycle of the f-ratio with winter maxima approaching 0.8–0.9 and summer minima reaching ca 0.1–0.2, with annual values averaging 0.7. The model reproduces the Eppley Curve, a hyperbolic relationship of increasing f with increasing primary production. This curve is shown to be the trajectory of the production system in the f-NPP phase plane. These model runs reproduce the annual cycles of areal NPP, and average annual NPP, new production, and particulate N flux values reported in the literature. The model demonstrates that currently accepted values for these annual fluxes can be reconciled only if the f-ratio has a high annual average. At present, the annual average f-ratio is poorly quantified due to severe undersampling in fall and winter. Our model\u27s ecological structure has been successfully incorporated into the Princeton general circulation model for the North Atlantic Ocean

    Temperature effects on export production in the open ocean

    Get PDF
    A pelagic food web model was formulated with the goal of developing a quantitative understanding of the relationship between total production, export production, and environmental variables in marine ecosystems. The model assumes that primary production is partitioned through both large and small phytoplankton and that the food web adjusts to changes in the rate of allochthonous nutrient inputs in a way that maximizes stability, i.e., the ability of the system to return to steady state following a perturbation. The results of the modeling exercise indicate that ef ratios, defined as new production/total production = export production/total production, are relatively insensitive to total production rates at temperatures greater than ∼25°C and lie in the range 0.1‐0.2. At moderate to high total production rates, ef ratios are insensitive to total production and negatively correlated with temperature. The maximum ef ratios are ∼0.67 at high rates of production and temperatures of 0°−10°C. At temperatures less than ∼20°C, there is a transition from low ef ratios to relatively high ef ratios as total production increases from low to moderate values. This transition accounts for the hyperbolic relationship often presumed to exist between ef ratios and total production. At low rates of production the model predicts a negative correlation between production and ef ratios, a result consistent with data collected at station ALOHA (22°45′N, 158°W) in the North Pacific subtropical gyre. The predictions of the model are in excellent agreement with results reported from the Joint Global Ocean Flux Study (JGOFS) and from other field work. In these studies, there is virtually no correlation between total production and ef ratios, but temperature alone accounts for 86% of the variance in the ef ratios. Model predictions of the absolute and relative abundance of autotrophic and heterotrophic microorganisms are in excellent agreement with data reported from field studies. Combining the ef ratio model with estimates of ocean temperature and photosynthetic rates derived from satellite data indicates that export production on a global scale is ∼20% of net photosynthesis. The results of the model have important implications for the impact of climate change on export production, particularly with respect to temperature effects

    Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model

    Get PDF
    The annual cycle of the plankton dynamics in the central Black Sea is studied by a one-dimensional vertically resolved physical-biological upper ocean model, coupled with the Mellor-Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in particular, formation of the cold intermediate water mass and yearly evolution of the upper layer stratification, the annual cycle of production with the fall and the spring blooms, and the subsurface phytoplankton maximum layer in summer, as well as realistic patterns of particulate organic carbon and nitrogen. The computed seasonal cycles of the chlorophyll and primary production distributions over the euphotic layer compare reasonably well with the data. Initiation of the spring bloom is shown to be critically dependent on the water column stability. It commences as soon as the convective mixing process weakens and before the seasonal stratification of surface waters begins to develop. It is followed by a weaker phytoplankton production at the time of establishment of the seasonal thermocline in April. While summer nutrient concentrations in the mixed layer are low enough to limit production, the layer between the thermocline and the base of the euphotic zone provides sufficient light and nutrient to support subsurface phytoplankton development. The autumn bloom takes place some time between October and December depending on environmental conditions. In the case of weaker grazing pressure to control the growth rate, the autumn bloom shifts to December-January and emerges as the winter bloom or, in some cases, is connected with the spring bloom to form one unified continuous bloom structure during the January-March period. These bloom structures are similar to the year-to-year variabilities present in the data

    Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model

    Get PDF
    The annual cycle of the plankton dynamics in the central Black Sea is studied by a one-dimensional vertically resolved physical-biological upper ocean model, coupled with the Mellor-Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in particular, formation of the cold intermediate water mass and yearly evolution of the upper layer stratification, the annual cycle of production with the fall and the spring blooms, and the subsurface phytoplankton maximum layer in summer, as well as realistic patterns of particulate organic carbon and nitrogen. The computed seasonal cycles of the chlorophyll and primary production distributions over the euphotic layer compare reasonably well with the data. Initiation of the spring bloom is shown to be critically dependent on the water column stability. It commences as soon as the convective mixing process weakens and before the seasonal stratification of surface waters begins to develop. It is followed by a weaker phytoplankton production at the time of establishment of the seasonal thermocline in April. While summer nutrient concentrations in the mixed layer are low enough to limit production, the layer between the thermocline and the base of the euphotic zone provides sufficient light and nutrient to support subsurface phytoplankton development. The autumn bloom takes place some time between October and December depending on environmental conditions. In the case of weaker grazing pressure to control the growth rate, the autumn bloom shifts to December-January and emerges as the winter bloom or, in some cases, is connected with the spring bloom to form one unified continuous bloom structure during the January-March period. These bloom structures are similar to the year-to-year variabilities present in the data

    Sea Ice Suppression of CO2 Outgassing in the West Antarctic Peninsula: Implications For The Evolving Southern Ocean Carbon Sink

    Get PDF
    The Southern Ocean plays an important role in the uptake of atmospheric CO2. In seasonally ice-covered regions, estimates of air-sea exchange remain uncertain in part because of a lack of observations outside the summer season. Here we present new estimates of air-sea CO2 flux in the West Antarctic Peninsula (WAP) from an autonomous mooring on the continental shelf. In summer, the WAP is a sink for atmospheric CO2 followed by a slow return to atmospheric equilibrium in autumn and winter. Outgassing is almost entirely suppressed by ice cover from June through October, resulting in a modest net annual CO2 sink. Model projections indicate sea ice formation will occur later in the season in the coming decades potentially weakening the net oceanic CO2 sink. Interannual variability in the WAP is significant, highlighting the importance of sustained observations of air-sea exchange in this rapidly changing region of the Southern Ocean
    corecore