3 research outputs found

    A payload for investigating the influence of convection on GaAs crystal growth

    Get PDF
    A comparative study of the influence of buoyancy driven fluid flow on gallium arsenide (GaAs) crystal growth was undertaken. Crystals will be grown from melts with different degrees of convective flow including growth in the microgravity environment of space. The space growth of GaAs will be performed in a Get Away Special payload. A well insulated growth furnace was designed for both Earth-based and space-based experiments. The self contained payload will carry two such furnaces in addition to a large battery power source and a microprocessor-based control and data acquisition system for regulating the growth process with high precision. The microcomputer will also monitor the growth conditions and measure and record the acceleration in 3 axes

    The Case of AB Aurigae's Disk in Polarized Light: Is There Truly a Gap?

    Full text link
    Using the NICMOS coronagraph, we have obtained high-contrast 2.0 micron imaging polarimetry and 1.1 micron imaging of the circumstellar disk around AB Aurigae on angular scales of 0.3-3 arcsec (40-550 AU). Unlike previous observations, these data resolve the disk in both total and polarized intensity, allowing accurate measurement of the spatial variation of polarization fraction across the disk. Using these observations we investigate the apparent "gap" in the disk reported by Oppenheimer et al. 2008. In polarized intensity, the NICMOS data closely reproduces the morphology seen by Oppenheimer et al., yet in total intensity we find no evidence for a gap in either our 1.1 or 2.0 micron images. We find instead that region has lower polarization fraction, without a significant decrease in total scattered light, consistent with expectations for back-scattered light on the far side of an inclined disk. Radiative transfer models demonstrate this explanation fits the observations. Geometrical scattering effects are entirely sufficient to explain the observed morphology without any need to invoke a gap or protoplanet at that location.Comment: Accepted to ApJ Letter
    corecore