24 research outputs found

    Inference in the Stochastic Block Model with a Markovian assignment of the communities

    Full text link
    We tackle the community detection problem in the Stochastic Block Model (SBM) when the communities of the nodes of the graph are assigned with a Markovian dynamic. To recover the partition of the nodes, we adapt the relaxed K-means SDP program presented in [11]. We identify the relevant signal-to-noise ratio (SNR) in our framework and we prove that the misclassification error decays exponentially fast with respect to this SNR. We provide infinity norm consistent estimation of the parameters of our model and we discuss our results through the prism of classical degree regimes of the SBMs' literature. MSC 2010 subject classifications: Primary 68Q32; secondary 68R10, 90C35

    SIGLE: a valid procedure for Selective Inference with the Generalized Linear Lasso

    Full text link
    This articles investigates the distribution of the solutions of the generalized linear lasso (GLL) sharing the same support. In this framework of post-selection inference (PSI), we investigate the selected and the saturated models: two different paradigms that determine the hypothesis being tested. Based on a new conditional Maximum Likelihood Estimator (MLE) approach, we introduce a procedure (referred to as SIGLE) to obtain asymptotically valid PSI confidence regions and simple hypothesis testing procedures for Generalized Linear Models (GLMs).In a second stage, we focus on the sparse logistic regression and we exhibit conditions ensuring that our conditional MLE method is valid. We present extensive numerical simulations supporting our theoretical results.Comment: New version of our work with additional numerical experiment

    Cram\'er-Rao bound-informed training of neural networks for quantitative MRI

    Full text link
    Neural networks are increasingly used to estimate parameters in quantitative MRI, in particular in magnetic resonance fingerprinting. Their advantages over the gold standard non-linear least square fitting are their superior speed and their immunity to the non-convexity of many fitting problems. We find, however, that in heterogeneous parameter spaces, i.e. in spaces in which the variance of the estimated parameters varies considerably, good performance is hard to achieve and requires arduous tweaking of the loss function, hyper parameters, and the distribution of the training data in parameter space. Here, we address these issues with a theoretically well-founded loss function: the Cram\'er-Rao bound (CRB) provides a theoretical lower bound for the variance of an unbiased estimator and we propose to normalize the squared error with respective CRB. With this normalization, we balance the contributions of hard-to-estimate and not-so-hard-to-estimate parameters and areas in parameter space, and avoid a dominance of the former in the overall training loss. Further, the CRB-based loss function equals one for a maximally-efficient unbiased estimator, which we consider the ideal estimator. Hence, the proposed CRB-based loss function provides an absolute evaluation metric. We compare a network trained with the CRB-based loss with a network trained with the commonly used means squared error loss and demonstrate the advantages of the former in numerical, phantom, and in vivo experiments.Comment: Xiaoxia Zhang, Quentin Duchemin, and Kangning Liu contributed equally to this wor

    Rapid quantitative magnetization transfer imaging: utilizing the hybrid state and the generalized Bloch model

    Full text link
    Purpose: To improve spatial resolution and scan time of quantitative magnetization transfer (qMT) imaging without constraints on model parameters. Theory and Methods: We combine two recently-proposed models in a Bloch-McConnell equation: the dynamics of the free spin pool is confined to the hybrid state and the dynamics of the semi-solid spin pool is described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three marked qMT parameters while accounting for an 8-parameter model. We sparsely sample each time frame along this spin dynamics with a 3D radial koosh-ball trajectory, reconstruct the data with sub-space modeling, and fit the qMT model with a neural network for computational efficiency. Results: We were able to extract qMT parameter maps of the whole brain with a nominal resolution of 1mm isotropic and high SNR from a 12.6 minute scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi-solid spin pool and slower relaxation, consistent with previous reports. Conclusion: The encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for highly efficient quantitative magnetization transfer imaging

    Dynamique de croissance de grands réseaux à l’aide de chaînes de Markov cachées

    No full text
    The first part of this thesis aims at introducing new models of random graphs that account for the temporal evolution of networks. More precisely, we focus on growth models where at each instant a new node is added to the existing graph. We attribute to this new entrant properties that characterize its connectivity to the rest of the network and these properties depend only on the previously introduced node. Our random graph models are thus governed by a latent Markovian dynamic characterizing the sequence of nodes in the graph. We are particularly interested in the Stochastic Block Model and in Random Geometric Graphs for which we propose algorithms to estimate the unknown parameters or functions defining the model. We then show how these estimates allow us to solve link prediction or collaborative filtering problems in networks.The theoretical analysis of the above-mentioned algorithms requires advanced probabilistic tools. In particular, one of our proof is relying on a concentration inequality for U-statistics in a dependent framework. Few papers have addressed this thorny question and existing works consider sets of assumptions that do not meet our needs. Therefore, the second part of this manuscript will be devoted to the proof of a concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. In Chapter 5, we exploit this concentration result for U-statistics to make new contributions to three very active areas of Statistics and Machine Learning.Still motivated by link prediction problems in graphs, we study post-selection inference procedures in the framework of logistic regression with. penalty. We prove a central limit theorem under the distribution conditional on the selection event and derive asymptotically valid testing procedures and confidence intervalsLa première partie de cette thèse vise à introduire de nouveaux modèles de graphes aléatoires rendant compte de l'évolution temporelle des réseaux. Plus précisément, nous nous concentrons sur des modèles de croissance où à chaque instant un nouveau noeud s'ajoute au graphe existant. Nous attribuons à ce nouvel entrant des propriétés qui caractérisent son pouvoir de connectivité au reste du réseau et celles-ci dépendent uniquement du noeud précédemment introduit. Nos modèles de graphes aléatoires sont donc régis par une dynamique markovienne latente caractérisant la séquence de noeuds du graphe. Nous nous intéresserons particulièrement au Stochastic Block Model et aux Graphes Aléatoires Géométriques pour lesquels nous proposons des algorithmes permettant d'estimer les paramètres du modèle. Nous montrons ensuite comment ce travail d'estimation nous permet de résoudre des problèmes de prédiction de lien ou de filtrage collaboratif dans les graphes.L'étude théorique des algorithmes précédemment décrits mobilisent des résultats probabilistes poussés. Nous avons notamment dû recourir à une inégalité de concentration pour les U-statistiques dans un cadre dépendant. Peu nombreux sont les travaux ayant abordé cette épineuse question et l'existant considère des jeux d'hypothèses ne répondant pas à nos besoins. Aussi, la deuxième partie de ce manuscrit sera consacrée à la preuve d'une inégalité de concentration pour les U-statistiques d'ordre deux pour des chaînes de Markov uniformément ergodique. Dans le Chapitre 5, nous exploitons notre résultat de concentration pour les U-statistiques pour apporter de nouvelles contributions à trois domaines très actifs des Statistiques et du Machine Learning.Toujours motivés par des problèmes de prédictions liens dans les graphes, nous nous intéressons dans un dernier chapitre aux procédures d'inférence post-sélection dans le cadre de la régression logistique avec pénalité. Nous prouvons un théorème central limite sous la distribution conditionnelle à l'événement de sélection et nous en déduisons des procédures de test et des intervalles de confiance asymptotiquement valide

    Dynamique de croissance de grands réseaux à l’aide de chaînes de Markov cachées

    No full text
    The first part of this thesis aims at introducing new models of random graphs that account for the temporal evolution of networks. More precisely, we focus on growth models where at each instant a new node is added to the existing graph. We attribute to this new entrant properties that characterize its connectivity to the rest of the network and these properties depend only on the previously introduced node. Our random graph models are thus governed by a latent Markovian dynamic characterizing the sequence of nodes in the graph. We are particularly interested in the Stochastic Block Model and in Random Geometric Graphs for which we propose algorithms to estimate the unknown parameters or functions defining the model. We then show how these estimates allow us to solve link prediction or collaborative filtering problems in networks.The theoretical analysis of the above-mentioned algorithms requires advanced probabilistic tools. In particular, one of our proof is relying on a concentration inequality for U-statistics in a dependent framework. Few papers have addressed this thorny question and existing works consider sets of assumptions that do not meet our needs. Therefore, the second part of this manuscript will be devoted to the proof of a concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. In Chapter 5, we exploit this concentration result for U-statistics to make new contributions to three very active areas of Statistics and Machine Learning.Still motivated by link prediction problems in graphs, we study post-selection inference procedures in the framework of logistic regression with. penalty. We prove a central limit theorem under the distribution conditional on the selection event and derive asymptotically valid testing procedures and confidence intervalsLa première partie de cette thèse vise à introduire de nouveaux modèles de graphes aléatoires rendant compte de l'évolution temporelle des réseaux. Plus précisément, nous nous concentrons sur des modèles de croissance où à chaque instant un nouveau noeud s'ajoute au graphe existant. Nous attribuons à ce nouvel entrant des propriétés qui caractérisent son pouvoir de connectivité au reste du réseau et celles-ci dépendent uniquement du noeud précédemment introduit. Nos modèles de graphes aléatoires sont donc régis par une dynamique markovienne latente caractérisant la séquence de noeuds du graphe. Nous nous intéresserons particulièrement au Stochastic Block Model et aux Graphes Aléatoires Géométriques pour lesquels nous proposons des algorithmes permettant d'estimer les paramètres du modèle. Nous montrons ensuite comment ce travail d'estimation nous permet de résoudre des problèmes de prédiction de lien ou de filtrage collaboratif dans les graphes.L'étude théorique des algorithmes précédemment décrits mobilisent des résultats probabilistes poussés. Nous avons notamment dû recourir à une inégalité de concentration pour les U-statistiques dans un cadre dépendant. Peu nombreux sont les travaux ayant abordé cette épineuse question et l'existant considère des jeux d'hypothèses ne répondant pas à nos besoins. Aussi, la deuxième partie de ce manuscrit sera consacrée à la preuve d'une inégalité de concentration pour les U-statistiques d'ordre deux pour des chaînes de Markov uniformément ergodique. Dans le Chapitre 5, nous exploitons notre résultat de concentration pour les U-statistiques pour apporter de nouvelles contributions à trois domaines très actifs des Statistiques et du Machine Learning.Toujours motivés par des problèmes de prédictions liens dans les graphes, nous nous intéressons dans un dernier chapitre aux procédures d'inférence post-sélection dans le cadre de la régression logistique avec pénalité. Nous prouvons un théorème central limite sous la distribution conditionnelle à l'événement de sélection et nous en déduisons des procédures de test et des intervalles de confiance asymptotiquement valide

    Reliable Time Prediction in the Markov Stochastic Block Model

    No full text
    We introduce the Markov Stochastic Block Model (MSBM): an extension of the Stochastic Block Model where communities of the nodes are assigned through a Markovian dynamic. We show how MSBMs can be used to detect dependence structure in growing graphs and we provide methods to solve the so-called link prediction and collaborative filtering problems. We make our approaches robust with respect to the outputs of the clustering algorithm and we propose a model selection procedure. Our methods can be applied regardless of the algorithm used to recover communities in the network. In this paper, we use a recent SDP method to infer the hidden communities and we provide theoretical guarantees. In particular, we identify the relevant signal-to-noise ratio (SNR) in our framework and we prove that the misclassification error decays exponentially fast with respect to this SNR

    Reliable prediction in the Markov stochastic block model

    No full text
    We introduce the Markov Stochastic Block Model (MSBM): a growth model for community based networks where node attributes are assigned through a Markovian dynamic. We rely on HMMs’ literature to design prediction methods that are robust to local clustering errors. We focus specifically on the link prediction and collaborative filtering problems and we introduce a new model selection procedure to infer the number of hidden clusters in the network. Our approaches for reliable prediction in MSBMs are not algorithm-dependent in the sense that they can be applied using your favourite clustering tool. In this paper, we use a recent SDP method to infer the hidden communities and we provide theoretical guarantees. In particular, we identify the relevant signal-to-noise ratio (SNR) in our framework and we prove that the misclassification error decays exponentially fast with respect to this SNR

    Dynamique de croissance de grands réseaux à l’aide de chaînes de Markov cachées

    No full text
    La première partie de cette thèse vise à introduire de nouveaux modèles de graphes aléatoires rendant compte de l'évolution temporelle des réseaux. Plus précisément, nous nous concentrons sur des modèles de croissance où à chaque instant un nouveau noeud s'ajoute au graphe existant. Nous attribuons à ce nouvel entrant des propriétés qui caractérisent son pouvoir de connectivité au reste du réseau et celles-ci dépendent uniquement du noeud précédemment introduit. Nos modèles de graphes aléatoires sont donc régis par une dynamique markovienne latente caractérisant la séquence de noeuds du graphe. Nous nous intéresserons particulièrement au Stochastic Block Model et aux Graphes Aléatoires Géométriques pour lesquels nous proposons des algorithmes permettant d'estimer les paramètres du modèle. Nous montrons ensuite comment ce travail d'estimation nous permet de résoudre des problèmes de prédiction de lien ou de filtrage collaboratif dans les graphes.L'étude théorique des algorithmes précédemment décrits mobilisent des résultats probabilistes poussés. Nous avons notamment dû recourir à une inégalité de concentration pour les U-statistiques dans un cadre dépendant. Peu nombreux sont les travaux ayant abordé cette épineuse question et l'existant considère des jeux d'hypothèses ne répondant pas à nos besoins. Aussi, la deuxième partie de ce manuscrit sera consacrée à la preuve d'une inégalité de concentration pour les U-statistiques d'ordre deux pour des chaînes de Markov uniformément ergodique. Dans le Chapitre 5, nous exploitons notre résultat de concentration pour les U-statistiques pour apporter de nouvelles contributions à trois domaines très actifs des Statistiques et du Machine Learning.Toujours motivés par des problèmes de prédictions liens dans les graphes, nous nous intéressons dans un dernier chapitre aux procédures d'inférence post-sélection dans le cadre de la régression logistique avec pénalité. Nous prouvons un théorème central limite sous la distribution conditionnelle à l'événement de sélection et nous en déduisons des procédures de test et des intervalles de confiance asymptotiquement validesThe first part of this thesis aims at introducing new models of random graphs that account for the temporal evolution of networks. More precisely, we focus on growth models where at each instant a new node is added to the existing graph. We attribute to this new entrant properties that characterize its connectivity to the rest of the network and these properties depend only on the previously introduced node. Our random graph models are thus governed by a latent Markovian dynamic characterizing the sequence of nodes in the graph. We are particularly interested in the Stochastic Block Model and in Random Geometric Graphs for which we propose algorithms to estimate the unknown parameters or functions defining the model. We then show how these estimates allow us to solve link prediction or collaborative filtering problems in networks.The theoretical analysis of the above-mentioned algorithms requires advanced probabilistic tools. In particular, one of our proof is relying on a concentration inequality for U-statistics in a dependent framework. Few papers have addressed this thorny question and existing works consider sets of assumptions that do not meet our needs. Therefore, the second part of this manuscript will be devoted to the proof of a concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. In Chapter 5, we exploit this concentration result for U-statistics to make new contributions to three very active areas of Statistics and Machine Learning.Still motivated by link prediction problems in graphs, we study post-selection inference procedures in the framework of logistic regression with. penalty. We prove a central limit theorem under the distribution conditional on the selection event and derive asymptotically valid testing procedures and confidence interval
    corecore