448 research outputs found

    Trends of CO2, CH4 and N2O over 1985-2010 from high-resolution FTIR solar observations at the Jungfraujoch station

    Full text link
    Two state-of-the-art Fourier Transform Infrared (FTIR) spectrometers are operated at the Jungfraujoch station (46.5ºN, 8.0ºE, 3580m asl) within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). The earliest FTIR observations have been obtained there in 1984. Since then, regular recordings of high-resolution solar absorption spectra have been performed at that site, under clear-sky conditions, allowing to collect almost 29000 observations relevant to the present communication. We present time series of three greenhouse gases targeted by the Kyoto Protocol: CO2, CH4 (and its isotopologue 13CH4) and N2O. These data sets have been obtained with the SFIT-2 algorithm which implements the Optimal Estimation Method of Rodgers (1990). This allows retrieving total columns of the target gases as well as information on their distribution with altitude. For the methane isotopologues and N2O, a Tikhonov L1 regularization scheme has been applied, as part of an harmonization effort carried out within the European HYMN project (see also Dils et al, 2010; Foster et al., 2010). Trends –and their associated uncertainties– characterizing these long series as well as the seasonal modulations have been determined with a statistical tool using bootstrap resampling (Gardiner et al., 2008). Trend values will be presented and critically discussed; in particular, we will investigate if significant changes in the rate of accumulations of these four atmospheric gases occurred over the last 25 years. Numerous additional greenhouse gases are accessible to the FTIR technique. Examples of such trend studies are reported at the EGU General Assembly by Mahieu et al. (2010) and Rinsland et al. (2010)

    Optimized approach to retrieve information on the tropospheric and stratospheric carbonyl sulfide (OCS) vertical distributions above Jungfraujoch from high-resolution FTIR solar spectra

    Full text link
    Carbonyl sulfide (OCS), which is produced in the troposphere from both biogenic and anthropogenic sources, is the most abundant gaseous sulfur species in the unpolluted atmosphere. Due to its low chemical reactivity and water solubility, a significant fraction of OCS is able to reach the stratosphere where it is converted to SO2 and ultimately to H2SO4 aerosols (Junge layer). These aerosols have the potential to amplify stratospheric ozone destruction on a global scale and may influence Earth’s radiation budget and climate through increasing solar scattering. The transport of OCS from troposphere to stratosphere is thought to be the primary mechanism by which the Junge layer is sustained during nonvolcanic periods. Because of this, long-term trends in atmospheric OCS concentration, not only in the troposphere but also in the stratosphere, are of great interest. A new approach has been developed and optimized to retrieve atmospheric abundance of OCS from high-resolution ground-based infrared solar spectra by using the SFIT-2 (v3.91) algorithm, including a new model for solar lines simulation (solar lines often produce significant interferences in the OCS microwindows). The strongest lines of the nu3 fundamental band of OCS at 2062 cm-1 have been systematically evaluated with objective criteria to select a new set of microwindows, assuming the HITRAN 2004 spectroscopic parameters with an increase in the OCS line intensities of the nu3band main isotopologue 16O12C32S by 15.79% as compared to HITRAN 2000 (Rothman et al., 2008, and references therein). Two regularization schemes have further been compared (deducted from ATMOS and ACE-FTS measurements or based on a Tikhonov approach), in order to select the one which optimizes the information content while minimizing the error budget. The selected approach has allowed us to determine updated OCS long-term trend from 1988 to 2009 in both the troposphere and the stratosphere, using spectra recorded on a regular basis with Fourier Transform Infrared spectrometers (FTIRs), under clear-sky conditions, at the NDACC site (Network for the Detection of Atmospheric Composition Change, visit http://www.ndacc.org) of the International Scientific Station of the Jungfraujoch (Swiss Alps, 46.5°N, 8.0°E, 3580m asl). Trends and seasonal cycles deduced from our results will be compared to values published in the literature and critically discussed. In particular, we will confirm the recent change in the OCS total column trend, which has become positive since 2002 before undergoing a slowing down over the last years

    <i>De novo</i> transcriptome analyses provide insights into opsin-based photoreception in the lanternshark <i>Etmopterus spinax</i>

    Get PDF
    The velvet belly lanternshark (Etmopterus spinax) is a small deep-sea shark commonly found in the Eastern Atlantic and the Mediterranean Sea. This bioluminescent species is able to emit a blue-green ventral glow used in counter-illumination camouflage, mainly. In this study, paired-end Illumina HiSeqTM technology has been employed to generate transcriptome data from eye and ventral skin tissues of the lanternshark. About 64 and 49 million Illumina reads were generated from skin and eye tissues respectively. The assembly allowed us to predict 119,749 total unigenes including 94,569 for the skin transcriptome and 94,365 for the eye transcriptome while 74,753 were commonly found in both transcriptomes. A taxonomy filtering was applied to extract a reference transcriptome containing 104,390 unigenes among which 38,836 showed significant similarities to known sequences in NCBI non-redundant protein sequences database. Around 58% of the annotated unigenes match with predicted genes from the Elephant shark (Callorhinchus milii) genome. The transcriptome completeness has been evaluated by successfully capturing around 98% of orthologous genes of the « Core eukaryotic gene dataset » within the E. spinax reference transcriptome. We identified potential “light-interacting toolkit” genes including multiple genes related to ocular and extraocular light perception processes such as opsins, phototransduction actors or crystallins. Comparative gene expression analysis reveals eye-specific expression of opsins, ciliary phototransduction actors, crystallins and vertebrate retinoid pathway actors. In particular, mRNAs from a single rhodopsin gene and its potentially associated peropsin were detected in the eye transcriptome, only, confirming a monochromatic vision of the lanternshark. Encephalopsin mRNAs were mainly detected in the ventral skin transcriptome. In parallel, immunolocalization of the encephalopsin within the ventral skin of the shark suggests a functional relation with the photophores, i.e. epidermal light-producing organs. We hypothesize that extraocular photoreception might be involved in the bioluminescence control possibly acting on the shutter opening and/or the photocyte activity itself. The newly generated reference transcriptome provides a valuable resource for further understanding of the shark biology

    Placoid scales in bioluminescent sharks: Scaling their evolution using morphology and elemental composition

    Get PDF
    Elasmobranchs are characterised by the presence of placoid scales on their skin. These scales, structurally homologous to gnathostome teeth, are thought to have various ecological functions related to drag reduction, predator defense or abrasion reduction. Some scales, particularly those present in the ventral area, are also thought to be functionally involved in the transmission of bioluminescent light in deep-sea environments. In the deep parts of the oceans, elasmobranchs are mainly represented by squaliform sharks. This study compares ventral placoid scale morphology and elemental composition of more than thirty deep-sea squaliform species. Scanning Electron Microscopy and Energy Dispersive X-ray spectrometry, associated with morphometric and elemental composition measurements were used to characterise differences among species. A maximum likelihood molecular phylogeny was computed for 43 shark species incuding all known families of Squaliformes. Character mapping was based on this phylogeny to estimate ancestral character states among the squaliform lineages. Our results highlight a conserved and stereotypical elemental composition of the external layer among the examined species. Phosphorus-calcium proportion ratios (Ca/P) slightly vary from 1.8-1.9, and fluorine is typically found in the placoid scale. By contrast, there is striking variation in shape in ventral placoid scales among the investigated families. Character-mapping reconstructions indicated that the shield-shaped placoid scale morphotype is likely to be ancestral among squaliform taxa. The skin surface occupied by scales appears to be reduced in luminous clades which reflects a relationship between scale coverage and the ability to emit light. In luminous species, the placoid scale morphotypes are restricted to pavement, bristle- and spine-shaped except for the only luminescent somniosid, Zameus squamulosus, and the dalatiid Mollisquama mississippiensis. These results, deriving from an unprecedented sampling, show extensive morphological diversity in placoid scale shape but little variation in elemental composition among Squaliformes.publishedVersio

    A new TRPV3 missense mutation in a patient with Olmsted syndrome and erythromelalgia

    Get PDF
    IMPORTANCE: Olmsted syndrome (OS) is a rare keratinizing disorder characterized by excessive epidermal thickening of the palms and soles, with clinical and genetic heterogeneity. Approximately 50 cases have been reported, with the molecular basis described in only 9. Recently, TRPV3 (transient receptor potential vanilloid 3) mutations were identified in autosomal-dominant OS in 7 sporadic cases and 1 familial case, whereas an MBTPS2 (membrane-bound transcription factor protease, site 2) mutation was reported in X-linked recessive OS. We report a new sporadic case of severe, atypical OS and its underlying genetic basis. OBSERVATIONS: Our patient is a young girl with severe nonmutilating (palmo)plantar keratoderma without periorificial keratotic plaques associated with intense acute flares of inflammation, itching, burning pain, vasodilatation, and redness of the extremities consistent with erythromelalgia. Whole exome sequencing of patient DNA identified a novel de novo heterozygous missense mutation within TRPV3, p.Leu673Phe, predicted to be damaging. CONCLUSIONS AND RELEVANCE: This case study further implicates TRPV3 in OS pathogenesis. In addition, previous reports of OS have not described erythromelalgia as a clinical feature. Its occurrence in our patient could be a chance event, but, if associated with OS, the features of erythromelalgia may expand the phenotypic spectrum of this rare syndrome. Copyright 2014 American Medical Association. All rights reserved

    Validation and data characteristics of methane and nitrous oxide profiles observed by MIPAS and processed with Version 4.61 algorithm

    Get PDF
    The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements
    corecore