18 research outputs found

    Anthelmintic action of plant cysteine proteinases against the rodent stomach nematode, Protospirura muricola, in vitro and in vivo

    Get PDF
    Cysteine proteinases from the fruit and latex of plants, including papaya, pineapple and fig, were previously shown to have a rapid detrimental effect, in vitro, against the rodent gastrointestinal nematodes, H eligmosomoides polygyrus (which is found in the anterior small intestine) and Trichuris miti,is (which resides in the caecum). Proteinases in the crude latex of papaya also showed anthelmintic efficacy against both nematodes in vivo. In this paper, we describe the in vitro and in vivo effects of these plant extracts against the rodent nematode, Protospirua muricola, which is found in the stomach. As in earlier work, all the plant cysteine proteinases examined, with the exception of actinidain from the juice of kiwi fruit, caused rapid loss of motility and digestion of the cuticle, leading to death of the nematode in vitro. In vivo, in contrast to the efficacy against H. polygyrus and T. muris, papaya latex only showed efficacy against P. muricola adult female worms when the stomach acidity had been neutralized prior to administration of papaya latex. Therefore, collectively, our studies have demonstrated that, with the appropriate formulation, plant cysteine proteinases have efficacy against nematodes residing throughout the rodent gastrointestinal tract

    In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris

    Get PDF
    We examined the mechanism of action and compared the anthelmintic efficacy of cysteine proteinases from papaya, pineapple, fig, kiwi fruit and Egyptian milkweed in vitro using the rodent gastrointestinal nematode Heligmosomoides polygyrus. Within a 2 h incubation period, all the cysteine proteinases, with the exception of the kiwi fruit extract, caused marked damage to the cuticle of H. polygyrus adult male and female worms, reflected in the loss of surface cuticular layers. Efficacy was comparable for both sexes of worms, was dependent on the presence of cysteine and was completely inhibited by the cysteine proteinase inhibitor, E-64. LD50 values indicated that the purified proteinases were more efficacious than the proteinases in the crude latex, with purified ficin, papain, chymopapain, Egyptian milkweed latex extract and pineapple fruit extract, containing fruit bromelain, having the most potent effect. The mechanism of action of these plant enzymes (i.e. an attack on the protective cuticle of the worm) suggests that resistance would be slow to develop in the field. The efficacy and mode of action make plant cysteine proteinases potential candidates for a novel class of anthelmintics urgently required for the treatment of humans and domestic livestock

    Cysteine proteinases from papaya (Carica papaya) in the treatment of experimental Trichuris suis infection in pigs: two randomized controlled trials

    Get PDF
    Background: Cysteine proteinases (CPs) from papaya (Carica papaya) possess anthelmintic properties against human soil-transmitted helminths (STH, Ascaris lumbricoides, Trichuris trichiura and hookworm), but there is a lack of supportive and up-to-date efficacy data. We therefore conducted two randomized controlled trials in pigs to assess the efficacy of papaya CPs against experimental infections with T. suis. Methods: First, we assessed efficacy by means of egg (ERR) and adult worm reduction rate (WRR) of a single-oral dose of 450 ÎĽmol active CPs (CP450) against low (inoculum of 300 eggs) and high (inoculum of 3,000 eggs) intensity T. suis infections and compared the efficacy with those obtained after a single-oral dose of 400 mg albendazole (ALB). In the second trial, we determined and compared the efficacy of a series of CP doses (45 [CP45], 115 [CP115], 225 [CP225], and 450 [CP450] ÎĽmol) against high intensity infections. Results: CP450 was highly efficacious against both levels of infection intensity, resulting in ERR and WRR of more than 97%. For both levels of infection intensity, CP450 was significantly more efficacious compared to ALB by means of WRR (low infection intensity: 99.0% vs. 39.0%; high infection intensity; 97.4% vs. 23.2%). When the efficacy was assessed by ERR, a significant difference was only observed for high intensity infections, CP450 being more efficacious than ALB (98.9% vs. 59.0%). For low infection intensities, there was no significant difference in ERR between CP450 (98.3%) and ALB (64.4%). The efficacy of CPs increased as a function of increasing dose. When determined by ERR, the efficacy ranged from 2.1% for CP45 to 99.2% for CP450. For WRR the results varied from -14.0% to 99.0%, respectively. Pairwise comparison revealed a significant difference in ERR and WRR only between CP45 and CP450, the latter being more efficacious. Conclusions: A single dose of 450 ÎĽmol CPs provided greater efficacy against T. suis infections in pigs than a single-oral dose of 400 mg ALB. Although these results highlight the possibility of papaya CPs for controlling human STH, further development is needed in order to obtain and validate an oral formulation for human application

    Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro

    Get PDF
    We examined the mechanism of action and compared the anthelmintic efficacy of cysteine proteinases from papaya, pineapple, fig, kiwi fruit and Egyptian milkweed in vitro using the rodent gastrointestinal nematode Heligmosomoides polygyrus. Within a 2 h incubation period, all the cysteine proteinases, with the exception of the kiwi fruit extract, caused marked damage to the cuticle of H. polygyrus adult male and female worms, reflected in the loss of surface cuticular layers. Efficacy was comparable for both sexes of worms, was dependent on the presence of cysteine and was completely inhibited by the cysteine proteinase inhibitor, E-64. LD50 values indicated that the purified proteinases were more efficacious than the proteinases in the crude latex, with purified ficin, papain, chymopapain, Egyptian milkweed latex extract and pineapple fruit extract, containing fruit bromelain, having the most potent effect. The mechanism of action of these plant enzymes (i.e. an attack on the protective cuticle of the worm) suggests that resistance would be slow to develop in the field. The efficacy and mode of action make plant cysteine proteinases potential candidates for a novel class of anthelmintics urgently required for the treatment of humans and domestic livestock

    An evolutionarily-unique heterodimeric voltage-gated cation channel found in aphids

    Get PDF
    We describe the identification in aphids of a unique heterodimeric voltage-gated sodium channel which has an atypical ion selectivity filter and, unusually for insect channels, is highly insensitive to tetrodotoxin. We demonstrate that this channel has most likely arisen by adaptation (gene fission or duplication) of an invertebrate ancestral mono(hetero)meric channel. This is the only identifiable voltage-gated sodium channel homologue in the aphid genome(s), and the channel’s novel selectivity filter motif (DENS instead of the usual DEKA found in other eukaryotes) may result in a loss of sodium selectivity, as indicated experimentally in mutagenised Drosophila channels

    Developing novel anthelmintics from plant cysteine proteinases

    Get PDF
    Intestinal helminth infections of livestock and humans are predominantly controlled by treatment with three classes of synthetic drugs, but some livestock nematodes have now developed resistance to all three classes and there are signs that human hookworms are becoming less responsive to the two classes (benzimidazoles and the nicotinic acetylcholine agonists) that are licensed for treatment of humans. New anthelmintics are urgently needed, and whilst development of new synthetic drugs is ongoing, it is slow and there are no signs yet that novel compounds operating through different modes of action, will be available on the market in the current decade. The development of naturally-occurring compounds as medicines for human use and for treatment of animals is fraught with problems. In this paper we review the current status of cysteine proteinases from fruits and protective plant latices as novel anthelmintics, we consider some of the problems inherent in taking laboratory findings and those derived from folk-medicine to the market and we suggest that there is a wealth of new compounds still to be discovered that could be harvested to benefit humans and livestoc
    corecore