742 research outputs found
Insulator-Metal Transition in One Dimension Induced by Long-Range Electronic Interactions
The effects of a long range electronic potential on a one dimensional
commensurate Charge Density Wave (CDW) state are investigated. Using numerical
techniques it is shown that a transition to a metallic ground state is reached
as the range of the electron-electron repulsion increases. In this metallic
state, the optical conductivity exhibits a large Drude weight. Possible
interpretations of our results are discussed.Comment: 5 pages, Revtex, minor misprints corrected and a reference to earlier
work by V. Emery and C. Noguera adde
Deducing correlation parameters from optical conductivity in the Bechgaard salts
Numerical calculations of the kinetic energy of various extensions of the
one-dimensional Hubbard model including dimerization and repulsion between
nearest neighbours are reported. Using the sum rule that relates the kinetic
energy to the integral of the optical conductivity, one can determine which
parameters are consistent with the reduction of the infrared oscillator
strength that has been observed in the Bechgaard salts. This leads to improved
estimates of the correlation parameters for both the TMTSF and TMTTF series.Comment: 12 pages, latex, figures available from the author
Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields
We theoretically study how the coexistent state of the charge density wave
and the spin density wave in the one-dimensional quarter filled band is
enhanced by magnetic fields. We found that when the correlation between
electrons is strong the spin density wave state is suppressed under high
magnetic fields, whereas the charge density wave state still remains. This will
be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure
Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System
We use the density matrix renormalization group (DMRG) to map out the ground
state of a XY-spin chain coupled to dispersionless phonons of frequency . We confirm the existence of a critical spin-phonon coupling for the onset of the spin gap bearing the signature of
a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover
when the spin-Peierls gap is of order . In the classical
regime, , the mean-field parameters are strongly renormalized
by non-adiabatic corrections. This is the first application of the DMRG to
phonons.Comment: 10 pages, 5 figures. To be published in PR
Charge gap in the one--dimensional dimerized Hubbard model at quarter-filling
We propose a quantitative estimate of the charge gap that opens in the
one-dimensional dimerized Hubbard model at quarter-filling due to dimerization,
which makes the system effectively half--filled, and to repulsion, which
induces umklapp scattering processes. Our estimate is expected to be valid for
any value of the repulsion and of the parameter describing the dimerization. It
is based on analytical results obtained in various limits (weak coupling,
strong coupling, large dimerization) and on numerical results obtained by exact
diagonalization of small clusters. We consider two models of dimerization:
alternating hopping integrals and alternating on--site energies. The former
should be appropriate for the Bechgaard salts, the latter for compounds where
the stacks are made of alternating and molecules. % and ( denotes , , ...).Comment: 33 pages, RevTeX 3.0, figures on reques
Theoretical Aspects of Charge Ordering in Molecular Conductors
Theoretical studies on charge ordering phenomena in quarter-filled molecular
(organic) conductors are reviewed. Extended Hubbard models including not only
the on-site but also the inter-site Coulomb repulsion are constructed in a
straightforward way from the crystal structures, which serve for individual
study on each material as well as for their systematic understandings. In
general the inter-site Coulomb interaction stabilizes Wigner crystal-type
charge ordered states, where the charge localizes in an arranged manner
avoiding each other, and can drive the system insulating. The variety in the
lattice structures, represented by anisotropic networks in not only the
electron hopping but also in the inter-site Coulomb repulsion, brings about
diverse problems in low-dimensional strongly correlated systems. Competitions
and/or co-existences between the charge ordered state and other states are
discussed, such as metal, superconductor, and the dimer-type Mott insulating
state which is another typical insulating state in molecular conductors.
Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state
for example due to the spin-Peierls transition, is considered as well. Distinct
situations are pointed out: influences of the coupling to the lattice degree of
freedom and effects of geometrical frustration which exists in many molecular
crystals. Some related topics, such as charge order in transition metal oxides
and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special
issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized
fil
Competition of Dimerization and Charge Ordering in the Spin-Peierls State of Organic Conductors
The effect of the charge ordering on the spin-Peierls (SP) state has been
examined by using a Peierls-Hubbard model at quarter-filling with dimerization,
on-site and nearest-neighbor repulsive interactions. By taking account of the
presence of dimerization, a bond distortion is calculated variationally with
the renormalization group method based on bosonization. When the charge
ordering appears at V=V_c with increasing the nearest-neighbor interaction (V),
the distortion exhibits a maximum due to competition between the dimerization
and the charge ordering. It is shown that the second-order phase transition
occurs from the SP state with the bond alternation to a mixed state with an
additional component of the site alternationat V = V_c.Comment: 11 pages, 13 figures, to be published in J. Phys. Soc. Jpn. 72 No.6
(2003
Bond and charge density waves in the isotropic interacting two-dimensional quarter-filled band and the insulating state proximate to organic superconductivity
We report two surprising results regarding the nature of the spatial broken
symmetries in the two-dimensional (2D), quarter-filled band with strong
electron-electron interactions. First, in direct contradiction to the
predictions of one-electron theory, we find a coexisting ``bond-order and
charge density wave'' (BCDW) insulating ground state in the 2D rectangular
lattice for all anisotropies, including the isotropic limit. Second, we find
that the BCDW further coexists with a spin-density wave (SDW) in the range of
large anisotropy. Further, in contrast to the interacting half-filled band, in
the interacting quarter-filled band there are two transitions: first, a similar
singlet-to-AFM/SDW transition for large anisotropy and second, an
AFM/SDW-to-singlet transition at smaller anisotropy. We discuss how these
theoretical results apply to the insulating states that are proximate to the
superconducting states of 2:1 cationic charge-transfer solids (CTS).
An important consequence of this work is the suggestion that organic
superconductivity is related to the proximate Coulomb-induced BCDW, with the
SDW that coexists for large anisotropies being also a consequence of the BCDW,
rather than the driver of superconductivity.Comment: 29 pages, 18 eps figures. Revised with new appendices; to appear in
Phys. Rev. B 62, Nov 15, 200
Fission cross section measurements for 240Pu, 242Pu
This report comprises the deliverable 1.5 of the ANDES project (EURATOM contract FP7-249671) of Task 3 "High accuracy measurements for fission" of Work Package 1 entitled "Measurements for advanced reactor systems". This deliverables provide evidence of a successful completion of the objectives of Task 3.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard
Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy
We study how the multiplicity of the Fermi surface affects the zero-bias peak
in conductance spectra of tunneling spectroscopy. As case studies, we consider
models for organic superconductors -(BEDT-TTF)Cu(NCS) and
(TMTSF)ClO. We find that multiplicity of the Fermi surfaces can lead to
a splitting of the zero-bias conductance peak (ZBCP). We propose that the
presence/absence of the ZBCP splitting is used as a probe to distinguish the
pairing symmetry in -(BEDT-TTF)Cu(NCS).Comment: 7 pages, 7 figure
- …
