16 research outputs found

    Microbiome-mediated colonization resistance: defense against enteropathogens and multi-drug resistant organisms

    Get PDF
    Gut colonization with multi-drug resistant organisms (MDROs) or enteropathogenic bacteria such as Clostridioides difficile can precede development of an infection and is considered an important public health concern. The gut microbiome is able to confer resistance against colonization and infection of such bacteria and this capability is termed colonization resistance. The aims of this thesis are 1) to recognize and identify bacteria or bacterial communities providing colonization resistance against enteropathogenic microorganisms and antibiotic resistant bacteria, and 2) to contribute to the microbiome research field by developing and applying new technical approaches. This thesis has been divided into three parts. First, current knowledge of microbiome-mediated colonization resistance against enteropathogens is summarized and supplemented with an overview of opportunities and challenges in development of new microbiome-based therapeutics. The second part of this thesis focuses on method optimization for microbiome research, both for wet-lab and dry-lab procedures. The final part describes changes in the human gut microbiota during infection or colonization by potentially pathogenic enteropathogens, including hookworm, C. difficile and MDROs.LUMC / Geneeskund

    Carriage of three plasmids in a single human clinical isolate of Clostridioides difficile

    Get PDF
    A subset of clinical isolates of Clostridioides difficile contains one or more plasmids and these plasmids can harbor virulence and antimicrobial resistance determinants. Despite their potential importance, C. difficile plasmids remain poorly characterized. Here, we provide the complete genome sequence of a human clinical isolate that carries three high-copy number plasmids from three different plasmid families that are therefore compatible. For two of these, we identify a region capable of sustaining plasmid replication in C. difficile that is also compatible with the plasmid pCD630 that is found in many laboratory strains. Together, our data advance our understanding of C. difficile plasmid biology.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    The bacterial gut microbiota of adult patients infected, colonized or noncolonized by clostridioides difficile

    Get PDF
    Gut microbiota composition in patients with Clostridioides difficile colonization is not well investigated. We aimed to identify bacterial signatures associated with resistance and susceptibility to C. difficile colonization (CDC) and infection (CDI). Therefore, gut microbiota composition from patients with CDC (n = 41), with CDI (n = 41), and without CDC (controls, n = 43) was determined through 16S rRNA gene amplicon sequencing. Bacterial diversity was decreased in CDC and CDI patients (p < 0.01). Overall microbiota composition was significantly different between control, CDC, and CDI patients (p = 0.001). Relative abundance of Clostridioides (most likely C. difficile) increased stepwise from controls to CDC and CDI patients. In addition, differential abundance analysis revealed that CDI patients' gut microbiota was characterized by significantly higher relative abundance of Bacteroides and Veillonella than CDC patients and controls. Control patients had significantly higher Eubacterium hallii and Fusicatenibacter abundance than colonized patients. Network analysis indicated that Fusicatenibacter was negatively associated with Clostridioides in CDI patients, while Veillonella was positively associated with Clostridioides in CDC patients. Bacterial microbiota diversity decreased in both CDC and CDI patients, but harbored a distinct microbiota. Eubacterium hallii and Fusicatenibacter may indicate resistance against C. difficile colonization and subsequent infection, while Veillonella may indicate susceptibility to colonization and infection by C. difficile.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Clostridioides difficile infection with isolates of cryptic clade C-II: a genomic analysis of polymerase chain reaction ribotype 151

    Get PDF
    Objectives: We report a patient case of pseudomembranous colitis associated with a monotoxinproducing Clostridioides difficile belonging to the very rarely diagnosed polymerase chain reaction (PCR) ribotype (RT) 151. To understand why this isolate was not identified using a routine commercial test, we performed a genomic analysis of RT151. Methods: Illumina short-read sequencing was performed on n = 11 RT151s from various geographical regions to study their genomic characteristics and relatedness. Subsequently, we used PacBio circular consensus sequencing to determine the complete genome sequence of isolates belonging to cryptic clades CeI and C-II, which includes the patient isolate. Results: We found that 1) RT151s are polyphyletic with isolates falling into clades 1 and cryptic clades C eI and C-II; 2) RT151 contains both nontoxigenic and toxigenic isolates and 3) RT151 C-II isolates contained monotoxin pathogenicity loci. The isolate from our patient case report contains a novelpathogenicity loci insertion site, lacked tcdA and had a divergent tcdB sequence that might explain the failure of the diagnostic test. Discussion: This study shows that RT151 encompasses both typical and cryptic clades and provides conclusive evidence for C. difficile infection due to clade C-II isolates that was hitherto lacking. Vigilance towards C. difficile infection as a result of cryptic clade isolates is warranted. Quinten R. Ducarmon, Clin Microbiol Infect 2023;29:538.e1-538.e6 (c) 2022 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Microbiota-associated risk factors for asymptomatic gut colonisation with multi-drug-resistant organisms in a Dutch nursing home

    Get PDF
    Background Nursing home residents have increased rates of intestinal colonisation with multidrug-resistant organisms (MDROs). We assessed the colonisation and spread of MDROs among this population, determined clinical risk factors for MDRO colonisation and investigated the role of the gut microbiota in providing colonisation resistance against MDROs. Methods We conducted a prospective cohort study in a Dutch nursing home. Demographical, epidemiological and clinical data were collected at four time points with 2-month intervals (October 2016-April 2017). To obtain longitudinal data, faecal samples from residents were collected for at least two time points. Ultimately, twenty-seven residents were included in the study and 93 faecal samples were analysed, of which 27 (29.0%) were MDRO-positive. Twelve residents (44.4%) were colonised with an MDRO at at least one time point throughout the 6-month study. Results Univariable generalised estimating equation logistic regression indicated that antibiotic use in the previous 2 months and hospital admittance in the previous year were associated with MDRO colonisation. Characterisation of MDRO isolates through whole-genome sequencing revealed Escherichia coli sequence type (ST)131 to be the most prevalent MDRO and ward-specific clusters of E. coli ST131 were identified. Microbiota analysis by 16S rRNA gene amplicon sequencing revealed no differences in alpha or beta diversity between MDRO-positive and negative samples, nor between residents who were ever or never colonised. Three bacterial taxa (Dorea, Atopobiaceae and Lachnospiraceae ND3007 group) were more abundant in residents never colonised with an MDRO throughout the 6-month study. An unexpectedly high abundance of Bifidobacterium was observed in several residents. Further investigation of a subset of samples with metagenomics showed that various Bifidobacterium species were highly abundant, of which B. longum strains remained identical within residents over time, but were different between residents. Conclusions Our study provides new evidence for the role of the gut microbiota in colonisation resistance against MDROs in the elderly living in a nursing home setting. Dorea, Atopobiaceae and Lachnospiraceae ND3007 group may be associated with protection against MDRO colonisation. Furthermore, we report a uniquely high abundance of several Bifidobacterium species in multiple residents and excluded the possibility that this was due to probiotic supplementation.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Fecal microbiota transplantation influences procarcinogenic Escherichia coli in recipient recurrent Clostridioides difficile patients

    Get PDF
    BACKGROUND & AIMS: Patients with multiple recurrent Clostridioides difficile infection (rCDI) have a disturbed gut microbiota that can be restored by fecal microbiota trans-plantation (FMT). Despite extensive screening, healthy feces donors may carry bacteria in their intestinal tract that could have long-term health effects, such as potentially procarci-nogenic polyketide synthase-positive (pks+) Escherichia coli. Here, we aim to determine whether the pks abundance and persistence of pks+ E coli is influenced by pks status of the donor feces. METHODS: In a cohort of 49 patients with rCDI treated with FMT and matching donor samples-the largest cohort of its kind, to our knowledge-we retrospectively screened fecal metagenomes for pks+ E coli and compared the presence of pks in patients before and after treatment and to their respective donors. RESULTS: The pks island was more prevalent (P = .026) and abundant (P < .001) in patients with rCDI (pre-FMT, 27 of 49 [55%]; median, 0.46 reads per kilobase per million [RPKM] pks) than in healthy donors (3 of 8 donors [37.5%], 11 of 38 samples [29%]; median, 0.01 RPKM pks). The pks status of patients post-FMT depended on the pks status of the donor suspension with which the patient was treated (P = .046). Particularly, persistence (8 of 9 cases) or clearance (13 of 18) of pks+ E coli in pks+ patients was correlated to pks in the donor (P = .004). CONCLUSIONS: We conclude that FMT contrib-utes to pks+ E coli persistence or eradication in patients with rCDI but that donor-to-patient transmission of pks+ E coli is unlikely.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    proGenomes3: approaching one million accurately and consistently annotated high-quality prokaryotic genomes

    Get PDF
    The interpretation of genomic, transcriptomic and other microbial 'omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/

    Response to: 'irculating microbiome in blood of different circulatory compartments' by Schierwagen et al

    No full text
    Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    International travel, the gut microbiome, and ESBL-E coli carriage

    No full text
    Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Toward Standards in Clinical Microbiota Studies: Comparison of Three DNA Extraction Methods and Two Bioinformatic Pipelines

    No full text
    When studying the microbiome using next-generation sequencing, the DNA extraction method, sequencing procedures, and bioinformatic processing are crucial to obtain reliable data. Method choice has been demonstrated to strongly affect the final biological interpretation. We assessed the performance of three DNA extraction methods and two bioinformatic pipelines for bacterial microbiota profiling through 16S rRNA gene amplicon sequencing, using positive and negative controls for DNA extraction and sequencing and eight different types of high- or low-biomass samples. Performance was evaluated based on quality control passing, DNA yield, richness, diversity, and compositional profiles. All DNA extraction methods retrieved the theoretical relative bacterial abundance with a maximum 3-fold change, although differences were seen between methods, and library preparation and sequencing induced little variation. Bioinformatic pipelines showed different results for observed richness, but diversity and compositional profiles were comparable. DNA extraction methods were successful for feces and oral swabs, and variation induced by DNA extraction methods was lower than intersubject (biological) variation. For low-biomass samples, a mixture of genera present in negative controls and sample-specific genera, possibly representing biological signal, were observed. We conclude that the tested bioinformatic pipelines perform equally, with pipeline-specific advantages and disadvantages. Two out of three extraction methods performed equally well, while one method was less accurate regarding retrieval of compositional profiles. Lastly, we again demonstrate the importance of including negative controls when analyzing low-bacterial-biomass samples.IMPORTANCE Method choice throughout the workflow of a microbiome study, from sample collection to DNA extraction and sequencing procedures, can greatly affect results. This study evaluated three different DNA extraction methods and two bioinformatic pipelines by including positive and negative controls and various biological specimens. By identifying an optimal combination of DNA extraction method and bioinformatic pipeline use, we hope to contribute to increased methodological consistency in microbiota studies. Our methods were applied not only to commonly studied samples for microbiota analysis, e.g., feces, but also to more rarely studied, low-biomass samples. Microbiota composition profiles of low-biomass samples (e.g., urine and tumor biopsy specimens) were not always distinguishable from negative controls, or showed partial overlap, confirming the importance of including negative controls in microbiota studies, especially when low bacterial biomass is expected.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc
    corecore