353 research outputs found

    MED12 regulates a transcriptional network of calcium-handling genes in the heart

    No full text
    The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function, such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium-handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and we found that MED12 localizes to transcription factor consensus sequences within calcium-handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes and that MED12 and MEF2 co-occupy promoters of calcium-handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and that overexpression of both increases expression of calcium-handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium-handling genes, consequently mediating contractility in the mammalian heart

    Ablation of CaMKIId oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease

    Get PDF
    CRISPR-Cas9 gene editing is emerging as a prospective therapy for genomic mutations. However, current editing approaches are directed primarily toward relatively small cohorts of patients with specific mutations. Here, we describe a cardioprotective strategy potentially applicable to a broad range of patients with heart disease. We used base editing to ablate the oxidative activation sites of CaMKIId, a primary driver of cardiac disease. We show in cardiomyocytes derived from human induced pluripotent stem cells that editing the CaMKIId gene to eliminate oxidation-sensitive methionine residues confers protection from ischemia/reperfusion (IR) injury. Moreover, CaMKIId editing in mice at the time of IR enables the heart to recover function from otherwise severe damage. CaMKIId gene editing may thus represent a permanent and advanced strategy for heart disease therapy

    A renewable energy-centred research agenda for planning and financing Nexus development objectives in rural sub-Saharan Africa

    Get PDF
    In rural sub-Saharan Africa – the global poverty hotspot – the vast majority of cropland is rainfed only, resulting in reduced and unstable yields. Smallholder farmers account for 80% of agricultural production but they have limited access to relevant services to support both commercial operations and their livelihoods: more than two-thirds of rural dwellers have no access to electricity (crucial for crop irrigation, processing, and storage) and about 40% have no access to clean water. Previous research has analysed integrated technological and resource management approaches to tackle these overlapping development gaps. To finance and implement such transformations in resource-constrained settings, it is now crucial to understand the business and investment implications, also considering the strong regional population growth and the increasing frequency and intensity of climate extremes. Here, we lay out a research agenda that promotes the integration of multi-scale modelling excellence along the climate-water-renewable energy-agriculture-development Nexus and the creation of robust business models for private companies that can sustainably support private smallholder farmers of SSAin their effort to eradicate poverty and inequality. The proposed agenda is a cornerstone of the EC-H2020 project LEAP-RE RE4AFAGRI (“Renewable Energy for African Agriculture: Integrating Modelling Excellence and Robust Business Models”). In proposing the agenda, we highlight the importance of integrating energy access into the Nexus framework from both research and investment perspectives

    Fine-structural distribution of MMP-2 and MMP-9 activities in the rat skeletal muscle upon training: a study by high-resolution in situ zymography

    Get PDF
    Matrix metalloproteinases (MMPs) are key regulators of extracellular matrix remodeling, but have also important intracellular targets. The purpose of this study was to examine the activity and subcellular localization of the gelatinases MMP-2 and MMP-9 in skeletal muscle of control and physically trained rats. In control hind limb muscle, the activity of the gelatinases was barely detectable. In contrast, after 5 days of intense exercise, in Soleus (Sol), but not Extensor digitorum longus (EDL) muscle, significant upregulation of gelatinolytic activity in myofibers was observed mainly in the nuclei, as assessed by high resolution in situ zymography. The nuclei of quiescent satellite cells did not contain the activity. Within the myonuclei, the gelatinolytic activity colocalized with an activated RNA Polymerase II. Also in Sol, but not in EDL, there were few foci of mononuclear cells with strongly positive cytoplasm, associated with apparent necrotic myofibers. These cells were identified as activated satellite cells/myoblasts. No extracellular gelatinase activity was observed. Gel zymography combined with subcellular fractionation revealed training-related upregulation of active MMP-2 in the nuclear fraction, and increase of active MMP-9 in the cytoplasmic fraction of Sol. Using RT-PCR, selective increase in MMP-9 mRNA was observed. We conclude that training activates nuclear MMP-2, and increases expression and activity of cytoplasmic MMP-9 in Sol, but not in EDL. Our results suggest that the gelatinases are involved in muscle adaptation to training, and that MMP-2 may play a novel role in myonuclear functions

    Underdiagnosis and referral bias of autism in ethnic minorities

    Get PDF
    This study examined (1) the distribution of ethnic minorities among children referred to autism institutions and (2) referral bias in pediatric assessment of autism in ethnic minorities. It showed that compared to the known community prevalence, ethnic minorities were under-represented among 712 children referred to autism institutions. In addition, pediatricians (n = 81) more often referred to autism when judging clinical vignettes of European majority cases (Dutch) than vignettes including non-European minority cases (Moroccan or Turkish). However, when asked explicitly for ratings of the probability of autism, the effect of ethnic background on autism diagnosis disappeared. We conclude that the use of structured ratings may decrease the likelihood of ethnic bias in diagnostic decisions of autis

    A renewable energy-centred research agenda for planning and financing Nexus development objectives in rural sub-Saharan Africa

    Get PDF
    In rural sub-Saharan Africa – the global poverty hotspot – the vast majority of cropland is rainfed only, resulting in reduced and unstable yields. Smallholder farmers account for 80% of agricultural production but they have limited access to relevant services to support both commercial operations and their livelihoods: more than two-thirds of rural dwellers have no access to electricity (crucial for crop irrigation, processing, and storage) and about 40% have no access to clean water. Previous research has analysed integrated technological and resource management approaches to tackle these overlapping development gaps. To finance and implement such transformations in resource-constrained settings, it is now crucial to understand the business and investment implications, also considering the strong regional population growth and the increasing frequency and intensity of climate extremes. Here, we lay out a research agenda that promotes the integration of multi-scale modelling excellence along the climate-water-renewable energy-agriculture-development Nexus and the creation of robust business models for private companies that can sustainably support private smallholder farmers of SSAin their effort to eradicate poverty and inequality. The proposed agenda is a cornerstone of the EC-H2020 project LEAP-RE RE4AFAGRI (“Renewable Energy for African Agriculture: Integrating Modelling Excellence and Robust Business Models”). In proposing the agenda, we highlight the importance of integrating energy access into the Nexus framework from both research and investment perspectives

    Detection of a Cis eQTL Controlling BMCO1 Gene Expression Leads to the Identification of a QTG for Chicken Breast Meat Color

    Get PDF
    Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15′-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A

    Myogenin Regulates Exercise Capacity and Skeletal Muscle Metabolism in the Adult Mouse

    Get PDF
    Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle
    corecore