931 research outputs found

    The Josephson critical current in a long mesoscopic S-N-S junction

    Full text link
    We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions made of a diffusive normal metal (N) embedded between two superconducting electrodes (S). Our experiments are performed on Nb-Cu-Nb junctions with highly-transparent interfaces. We give the predictions of the quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between the short and the long junction regimes and provide the temperature dependence of the critical current using dimensionless units eRNIc/ϔceR_{N}I_{c}/\epsilon_{c} and kBT/ϔck_{B}T/\epsilon_{c} where ϔc\epsilon_{c} is the Thouless energy. Experimental and theoretical results are in excellent quantitative agreement.Comment: 5 pages, 4 figures, slighly modified version, publishe

    Stability of parallel wake flows in quasigeostrophic and frontal regimes

    No full text
    International audienceRecent laboratory experiments [G. Perret, A. Stegner, M. Farge, and T. Pichon, Phys. Fluids 18, 036603 (2006)] have shown that the vortex-street formed in the wake of a towed cylinder in a rotating shallow-water layer could present a strong cyclone-anticyclone asymmetry. In extreme cases, only large-scale anticyclones were observed in the far wake. This asymmetry occurs in the so-called frontal regime when the Rossby number is small and the surface deviation is large. This asymmetry may have various origins and in particular may be attributed to the asymmetry of the flow around the cylinder, to the linear stability property of the wake, or to its nonlinear evolution. To discriminate between these mechanisms, we study the stability of two idealized parallel flows in the quasigeostrophic and in the frontal regimes. These parallel flows correspond to two velocity profiles measured just behind the cylinder in a region where the perturbations are negligible. According to our linear stability analysis, the most unstable mode, in the frontal regime, is localized in the anticyclonic shear region whether the base flow profile is symmetric or not. On a linear basis, it is thus more the instability that imposes the asymmetry than the base flow. Direct numerical simulations of the synthetic parallel wake flows show that nonlinearity exacerbates the dominance of the anticyclonic mode linearly selected. By numerically studying the spatio-temporal evolution of a small perturbation localized in space, we show that, unlike incompressible two-dimensional wake flows and the symmetric wake in the quasigeostrophic regime, the parallel asymmetric wake is strongly convectively unstable in the frontal regime, and not absolutely unstable. When the surface deformation becomes large, the wake instability changes from the absolute instability in the quasi-geostrophic regime to the strongly convective instability of the frontal regime. This explains well the changes. © 2006 American Institute of Physics

    Commissioning and operation of the Cherenkov detector for proton Flux Measurement of the UA9 Experiment

    Full text link
    The UA9 Experiment at CERN-SPS investigates channeling processes in bent silicon crystals with the aim to manipulate hadron beams. Monitoring and characterization of channeled beams in the high energy accelerators environment ideally requires in-vacuum and radiation hard detectors. For this purpose the Cherenkov detector for proton Flux Measurement (CpFM) was designed and developed. It is based on thin fused silica bars in the beam pipe vacuum which intercept charged particles and generate Cherenkov light. The first version of the CpFM is installed since 2015 in the crystal-assisted collimation setup of the UA9 experiment. In this paper the procedures to make the detector operational and fully integrated in the UA9 setup are described. The most important standard operations of the detector are presented. They have been used to commission and characterize the detector, providing moreover the measurement of the integrated channeled beam profile and several functionality tests as the determination of the crystal bending angle. The calibration has been performed with Lead (Pb) and Xenon (Xe) beams and the results are applied to the flux measurement discussed here in detail.Comment: 25 pages, 14 figure

    THE EFFECT OF SPERMINE ON TUBERCLE BACILLI

    Full text link

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table
    • 

    corecore