3,241 research outputs found

    Role of Fermion Exchanges in Statistical Signatures of Composite Bosons

    Get PDF
    We study statistical signatures of composite bosons made of two fermions using a new many-body approach. Extending number-states to composite bosons, two-particle correlations as well as the dispersion of the probability distribution are analyzed. We show that the particle composite nature reduces the anti-bunching effect predicted for elementary bosons. Furthermore, the probability distribution exhibits a dispersion which is greater for composite bosons than for elementary bosons. This dispersion corresponds to the one of sub-Poissonian processes, as for a quantum state, but, unlike its elementary boson counterpart, it is not minimum. In general, our work shows that it is necessary to take into account the Pauli exclusion principle which takes place between fermionic components of composite bosons - along the line here used - to possibly extract statistical properties in a precise way.Comment: 14 page

    Optical signatures of a fully dark exciton condensate

    Full text link
    We propose optical means to reveal the presence of a dark exciton condensate that does not yield any photoluminescence at all. We show that (i) the dark exciton density can be obtained from the blueshift of the excitonic absorption line induced by dark excitons; (ii) the polarization of the dark condensate can be deduced from the blueshift dependence on probe photon polarization and also from Faraday effect, linearly polarized dark excitons leaving unaffected the polarization plane of an unabsorbed photon beam. These effects result from carrier exchanges between dark and bright excitons.Comment: 5 pages, 4 figure

    Effects of fermion exchanges on the polarization of exciton condensates

    Get PDF
    Exchange processes are responsible for the stability of elementary boson condensates with respect to their possible fragmentation. This remains true for composite bosons when single fermion exchanges are included but spin degrees of freedom are ignored. We here show that their inclusion can produce a "spin-fragmentation" of a condensate of dark excitons, i.e., an unpolarized condensate with equal amount of dark excitons with spins (+2) and (-2). Quite surprisingly, for spatially indirect excitons of semiconductor bilayers, we predict that the condensate polarization can switch from unpolarized to fully polarized, depending on the distance between the layers confining electrons and holes. Remarkably, the threshold distance associated to this switching lies in the regime where experiments are nowadays carried out.Comment: 5 pages, 1 figur

    Environmental analysis of the chemical release module

    Get PDF
    The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program

    The exciton many-body theory extended to arbitrary composite bosons

    Full text link
    We have recently constructed a many-body theory for composite excitons, in which the possible carrier exchanges between NN excitons can be treated exactly through a set of dimensionless ``Pauli scatterings'' between two excitons. Many-body effects with excitons turn out to be rather simple because excitons are the exact one-electron-hole-pair eigenstates of the semiconductor Hamiltonian, thus forming a complete orthogonal set for one-pair states. It can however be of interest to extend this new many-body theory to more complicated composite bosons, \emph{i. e.}, ``cobosons'', which are not necessarily the one-pair eigenstates of the system Hamiltonian, nor even orthogonal. The purpose of this paper is to derive the ``Pauli scatterings'' and the ``interaction scatterings'' of these cobosons formally, \emph{i. e.}, just in terms of their wave functions and the interaction potentials which exist between the fermions from which they are constructed. We also explain how to derive many-body effects in this very general system of composite bosons

    Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Get PDF
    In the cold-fluid dispersion relation ω = ω_p/[1+(k_⊥/k_z)^(2]1/2) for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k_⊥/k_z. As a result, for any frequency ω<ω_p, there are infinitely many degenerate waves, all having the same value of k_⊥/k_z. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr = ±(ω_p^2/ω^2-1)^(1/2). Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid
    • …
    corecore