70 research outputs found

    Weaning from Mechanical Ventilation

    Full text link
    For most patients who require mechanical ventilation weaning and extubation is simple. In these patients a variety of strategies can be successful. In addition, sim ple criteria may predict when the patient is ready for extubation. For the small group of patients who require prolonged mechanical ventilation, however, contro versy exists about how best to remove ventilator sup port by weaning, and available data are sparse. Much of the controversy has centered on T-piece weaning ver sus intermittent mandatory ventilation. To date no con trolled study has demonstrated the superiority of either intermittent mandatory ventilation or T-piece weaning in difficult-to-wean patients. In the evolution of this con troversy, concern has developed over the potential for increased inspiratory work and expiratory resistance that may be associated with certain intermittent manda tory ventilation systems. The possibility that significant inspiratory work may occur during assist-control venti lation has also been demonstrated. Respiratory muscle weakness and fatigue is likely important in failure to wean. Other possible causes are failure of the cardiovas cular system and impaired ability of the lung to carry out gas exchange. In this article we first examine criteria and techniques for weaning short-term ventilator pa tients. We then examine criteria to begin the weaning process in prolonged ventilation patients, potential causes of failure to wean, and techniques that can be used to remove ventilator support from patients who are difficult to wean. Much literature has been devoted to techniques and criteria for weaning and extubation of patients from mechanical ventilation. For most patients who require ventilatory support, weaning and extuba tion can be easily accomplished by a variety of tech niques [1-4]. At one referral center 77.2% of all surviving patients were weaned from the ventilator within 72 hours of the onset of mechanical ventila tion, and 91% were weaned within 7 days [1]. Less than 10% of ventilated patients potentially posed problems in weaning from mechanical ventilation. Similarly, at a community hospital, few surviving patients required prolonged ventilatory support [2]. In easy-to-wean patients, Sahn and Lakshminarayan [5] described simple criteria that are predictive of successful discontinuation of ventilator support. For the small group of patients who require pro longed mechanical ventilation, however, minimal data are available. In these patients criteria to deter mine weaning ability or which measurements to follow are not clearly defined. Furthermore, no controlled trials are available to compare the differ ent weaning techniques proposed. In this article we first address routine weaning of the patient who has not required prolonged ventilator support. We then examine the difficult-to-wean patient and dis cuss criteria to begin the weaning process, poten tial causes of failure to wean, and available weaning techniques.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68923/2/10.1177_088506668800300207.pd

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure

    A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.</p> <p>Results</p> <p>Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an <it>in vivo </it>recombination strategy. Each AMP was then expressed as an Npro fusion protein in <it>Escherichia coli</it>. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On <it>in vitro </it>refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against <it>E. coli</it>, <it>Micrococcus </it>luteus and <it>S. cerevisia</it>.</p> <p>Conclusions</p> <p>The method described in this report allows the fast synthesis of genes that are optimized for over-expression in <it>E. coli </it>and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.</p

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Lateral membrane waves constitute a universal dynamic pattern of motile cells.

    Get PDF
    We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel
    • 

    corecore