30 research outputs found

    Reporter Gene Imaging of Immune Responses to Cancer: Progress and Challenges

    Get PDF
    Immune responses to cancer are dynamic processes which take place through the concerted activity of innate and adaptive cell populations. In order to fully understand the efficacy of immune therapies for cancer, it is critical to understand how the treatment modulates the function of each cell type involved in the anti-tumor immune response. Molecular imaging is a versatile method for longitudinal studies of cellular localization and function. The development of reporter genes for tracking cell movement and function was a powerful addition to the immunologist's toolbox. This review will highlight the advances and challenges in the use of reporter gene imaging to track immune cell localization and function in cancer

    Chronic non-puerperal incomplete uterine inversion

    Get PDF
    Chronic non-puerperal uterine inversion is an extremely rare diagnosis especially in younger women. The diagnosis commands high level of clinical suspicion supplemented with imaging. An emergency admission of a 35-year-old para 1 with submucosal fundal fibroid presenting with excessive menstrual flow with hemodynamic instability requiring multiple blood transfusions is presented. On abdominal examination slight suprapubic tenderness was made out with no palpable mass. Bimanual examination revealed a non-pediculated mass in upper vagina with a circular constriction around it. On ultrasound, cupping of fundus suggested uterine inversion. Pelvic MRI reaffirmed the findings of a highly vascularized intracavitary leiomyoma protruding through the cervix. After optimization patient underwent myomectomy and Haultain鈥檚 procedure followed by total abdominal hysterectomy with bilateral salpingectomy. Post-operative period was uneventful. Inversion is generally associated with fundal fibroid polyp but can rarely follow submucosal leiomyoma. Imaging helps preoperative planning of management

    Hyperbiofilm formation by <i>Bordetella pertussis</i> strains correlates with enhanced virulence traits

    Get PDF
    Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.Centro de Investigaci贸n y Desarrollo en Fermentaciones IndustrialesFacultad de Ciencias Exacta

    Hyperbiofilm formation by <i>Bordetella pertussis</i> strains correlates with enhanced virulence traits

    Get PDF
    Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.Centro de Investigaci贸n y Desarrollo en Fermentaciones IndustrialesFacultad de Ciencias Exacta

    Hyperbiofilm formation by Bordetella pertussis strains correlates with enhanced virulence traits

    Get PDF
    Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.Fil: Cattelan, Natalia. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Conicet - La Plata. Centro de Investigaci贸n y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaci贸n y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Jennings Gee, Jamie. Wake Forest School of Medicine; Estados UnidosFil: Dubey, Purnima. Wake Forest School of Medicine; Estados Unidos. Ohio State University; Estados UnidosFil: Yantorno, Osvaldo Miguel. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Conicet - La Plata. Centro de Investigaci贸n y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaci贸n y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Deora, Rajendar. Wake Forest School of Medicine; Estados Unidos. Ohio State University; Estados Unido

    Bordetella biofilms: a lifestyle leading to persistent infections

    Get PDF
    Bordetella bronchiseptica and B. pertussis are Gram-negative bacteria that cause respiratory diseases in animals and humans. The current incidence of whooping cough or pertussis caused by B. pertussis has reached levels not observed since the 1950s. Although pertussis is traditionally known as an acute childhood disease, it has recently resurged in vaccinated adolescents and adults. These individuals often become silent carriers, facilitating bacterial circulation and transmission. Similarly, vaccinated and non-vaccinated animals continue to be carriers of B. bronchiseptica and shed bacteria resulting in disease outbreaks. The persistence mechanisms of these bacteria remain poorly characterized. It has been proposed that adoption of a biofilm lifestyle allows persistent colonization of the mammalian respiratory tract. The history of Bordetella biofilm research is only a decade long and there is no single review article that has exclusively focused on this area. We systematically discuss the role of Bordetella factors in biofilm development in vitro and in the mouse respiratory tract. We further outline the implications of biofilms to bacterial persistence and transmission in humans and for the design of new acellular pertussis vaccines.Centro de Investigaci贸n y Desarrollo en Fermentaciones Industriale

    Hyperbiofilm formation by <i>Bordetella pertussis</i> strains correlates with enhanced virulence traits

    Get PDF
    Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.Centro de Investigaci贸n y Desarrollo en Fermentaciones IndustrialesFacultad de Ciencias Exacta

    Positive and Negative Regulation of Prostate Stem Cell Antigen Expression by Yin Yang 1 in Prostate Epithelial Cell Lines

    Get PDF
    Prostate cancer is influenced by epigenetic modification of genes involved in cancer development and progression. Increased expression of Prostate Stem Cell Antigen (PSCA) is correlated with development of malignant human prostate cancer, while studies in mouse models suggest that decreased PSCA levels promote prostate cancer metastasis. These studies suggest that PSCA has context-dependent functions, and could be differentially regulated during tumor progression. In the present study, we identified the multi-functional transcription factor Yin Yang 1 (YY1) as a modulator of PSCA expression in prostate epithelial cell lines. Increased YY1 levels are observed in prostatic intraepithelial neoplasia (PIN) and advanced disease. We show that androgen-mediated up-regulation of PSCA in prostate epithelial cell lines is dependent on YY1. We identified two direct YY1 binding sites within the PSCA promoter, and showed that the upstream site inhibited, while the downstream site, proximal to the androgen-responsive element, stimulated PSCA promoter activity. Thus, changes in PSCA expression levels in prostate cancer may at least partly be affected by cellular levels of YY1. Our results also suggest multiple roles for YY1 in prostate cancer which may contribute to disease progression by modulation of genes such as PSCA
    corecore