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ABSTRACT 21 

 22 

Pertussis or whooping cough caused by the obligate human pathogen Bordetella pertussis is 23 

undergoing a world-wide resurgence. Majority of studies with this pathogen are conducted with 24 

laboratory-adapted strains which may not be representative of the species as a whole. Biofilm 25 

formation by B. pertussis plays an important role in its pathogenesis. We conducted a side-by 26 

side comparison of the biofilm forming ability of the prototype laboratory strains with currently 27 

circulating isolates from two countries with different vaccination programs. Compared to the 28 

reference strain, all strains examined herein formed biofilms at higher levels. Biofilm structural 29 

analyses revealed country-specific differences with strains from USA forming more structured 30 

biofilms. Hyper bacterial aggregation and reciprocal expression of biofilm-promoting and 31 

inhibitory factors were observed in clinical isolates. An association of increased biofilm 32 

formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in 33 

the mouse nose and trachea was detected. To our knowledge, this work links for the first time 34 

increased biofilm formation in bacteria with a colonization advantage in an animal model. We 35 

propose that the enhanced biofilm forming capacity of currently circulating strains contributes to 36 

their persistence, transmission and continued circulation.  37 

 38 

 39 

 40 

 41 

 42 
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INTRODUCTION 43 

Bordetella pertussis is a human-restricted bacterial pathogen that causes whooping cough or 44 

pertussis. Pertussis has been re-emerging in industrialized countries and remains endemic in 45 

many parts of the world (1). Current pertussis vaccines while preventing the severe symptoms of 46 

the disease do not prevent colonization, transmission and circulation of the pathogen (2). 47 

Reasons suggested for the re-emergence of pertussis are: (i) heightened disease awareness; (ii) 48 

development of new clinical definitions; (iii) improved diagnostic ability; (iv) poor efficacy of 49 

the current commercial vaccines and (v) antigenic and genetic shifts in circulating strains (3). 50 

 Genetic changes in currently circulating strains of B. pertussis have been primarily 51 

observed in genes which encode vaccine antigens, such as pertussis toxin (PT), filamentous 52 

hemagglutinin (FHA), pertactin (PRN), and fimbriae (Fim2,3) (4-8). In addition, isolates 53 

deficient in the production of PRN, FHA and PT (9-11) and those showing increased production 54 

of PT have also been reported (12). These genetic and phenotypic alterations are hypothesized to 55 

confer an adaptive advantage to the circulating strains with respect to survival and transmission 56 

among vaccinated populations (12, 13). Based on these, it is proposed that the laboratory 57 

reference strains, after more than six decades of in-vitro passage, do not represent the circulating 58 

B. pertussis organisms (14). This accentuates the need for research on recently circulating strains 59 

not only with respect to uncovering genomic alterations but also on understanding phenotypic 60 

variations, an area that remains poorly studied. 61 

Biofilms are sessile microbial communities which are enclosed in a self-produced or 62 

host-derived exopolymeric matrix (15). In some bacteria, biofilms promote environmental 63 

survival resulting in enhanced probability of host contact, while in others, biofilms are a critical 64 
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virulence determinant (16, 17). Many bacteria form biofilms during infection of non-mammalian 65 

and mammalian hosts and biofilms are in general less susceptible to anti-microbials and host 66 

immune components (18-20). Biofilms of B. pertussis have been observed on a variety of 67 

artificial surfaces and under static, shaking and fluid-flow conditions (21-25). Microscopically, 68 

B. pertussis biofilms are characterized by formation of spaced cell aggregates followed by the 69 

formation of three dimensional structures (pillars of bacteria separated by fluid channels or 70 

irregularly shaped microcolonies) encased in an opaque matrix composed of DNA and 71 

polysaccharide (23-27). In addition to laboratory settings, biofilms of B. pertussis have also been 72 

detected in the nose and trachea during experimental infections of mice (24, 25, 27). Correlation 73 

between biofilm forming ability of B. pertussis and pathogenesis is provided by the finding that 74 

mutants defective in biofilm formation on artificial surfaces fail to protect the bacterial cells from 75 

complement-mediated killing, attenuated for colonization of the mouse respiratory tract and are 76 

defective in biofilm formation on the respiratory tract (24, 27, 28). This has led to the hypothesis 77 

that biofilm formation in humans enables escape from immune defenses resulting in persistence, 78 

transmission and continued circulation of the bacteria (29). Support for this hypothesis is 79 

provided by microscopy of human tissue explants and respiratory tissues of patients which reveal 80 

biofilm-like structures similar to those formed on artificial surfaces and in mouse organs (30-32). 81 

Very little is known about the mechanisms by which B. pertussis biofilm growth has 82 

adapted with respect to time, region and changing immunization regimens. While increased 83 

levels of biofilm formation by circulating strains from Argentina and Australia have been 84 

reported (33, 34), nothing is known about the biofilm forming ability of circulating isolates from 85 

the USA. It is also not known if there are differences in biofilm structure between strains from 86 

different countries. In this report, we performed a side-by side comparison of the biofilm forming 87 
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ability of currently circulating strains from the USA and Argentina with the objective of 88 

determining variations in biofilm forming capacity and structure. We have also examined the 89 

mechanistic bases for hyperbiofilm formation. Finally, we have investigated the relationship 90 

between enhanced biofilm formation and pathogenic phenotypes.  91 

  92 
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RESULTS 93 

Recently circulating strains of B. pertussis from USA and Argentina form a thick bacterial 94 

ring at the air-liquid interface and display a hyperbiofilm phenotype 95 

The biofilm forming ability of B. pertussis strains currently circulating in the USA is not known. 96 

During routine roller drum growth in glass tubes of one such strain (STO1-SEAT0004), we 97 

noticed a thick bacterial ring at the liquid–air interface. In comparison, the reference laboratory 98 

strains B. pertussis Tohama I and Bp536, a Tohama I derivative formed either a thinner ring or 99 

did not form a ring (Fig. 1A). We followed this observation with additional strains from the USA 100 

and Argentina and grew them side by side, for comparison purposes. The USA strains resulted in 101 

either compact rings at the air-liquid interface or diffused rings over the glass surface. For the 102 

strains that formed diffused rings (H973, S49560 and H897), very little bacterial growth was 103 

visible in the liquid phase (Fig. 1A). In comparison, all the Argentinean strains formed compact 104 

rings at the air-liquid interface. 105 

We have previously reported a link between the formation of a ring at the air-liquid 106 

interface and biofilm formation in RB50, a B. bronchiseptica reference strain (35). Additionally, 107 

a cystic fibrosis isolate of B. bronchiseptica which formed a thicker ring than RB50, formed 108 

biofilms at higher levels (36). Thus, we hypothesized a hyperbiofilm phenotype for recent 109 

isolates of B. pertussis. To test this hypothesis, we quantified biofilms formed on polystyrene 110 

microtitre plates. After discarding bacteria from the planktonic phase and extensive washing, the 111 

attached biomass was quantified by staining adhered bacteria with crystal violet.  112 

In comparison to Bp536 and BpTohama I, all recent isolates formed higher levels of 113 

biofilms on microtitre plates (Fig. 1C). The observed differences in biofilm levels cannot be 114 
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explained by enhanced growth, since none of the recent isolates displayed significantly higher 115 

growth in the planktonic phase of biofilm cultures compared to Bp536 (Fig. S1). In combination, 116 

these results suggest that recently circulating strains of B. pertussis form higher levels of 117 

biofilms than the model laboratory-adapted strains. 118 

Hyperbiofilm forming strains display hyper aggregative properties 119 

Very little is known about the mechanisms that contribute to hyperbiofilm formation in B. 120 

pertussis. A positive correlation between autoaggregation and biofilm formation has been 121 

reported in bacteria (36, 37). We compared the autoaggregation index (AI) of three randomly 122 

chosen recently circulating strains from Argentina (Bp462, Bp892 and Bp2751) and USA (H921, 123 

H973 and STO1-SEAT0004) with Bp536 (Fig. 2). AI represents the fraction of the aggregated 124 

bacterial cells. After two hours of static incubation, the AI of these six strains was 8 to 16-fold 125 

higher than that of Bp536. To determine the kinetics of cellular aggregation, the culture tubes 126 

were additionally incubated statically for 5 and 24h. While at 5 and 24h of incubation, the AI of 127 

Bp536was higher than that at 2h, it never reached the values observed for the clinical strains. For 128 

the clinical strains, there was not a significant increase in AI at 5 and 24h compared to that at 2h. 129 

We conclude that the clinical strains form cellular aggregates faster and at higher levels than the 130 

reference strain. These results suggest that the clinical strains utilize hyperaggregation as a 131 

means to enhance their biofilm forming capacity. 132 

 133 

 134 

 135 
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Recently isolated strains of B. pertussis display increased aggregation during initial surface 136 

attachment and form biofilms with enhanced structural complexity 137 

The approaches used above do not provide detailed information on either the qualitative or 138 

quantitative strain-specific differences in biofilm structure. The objective of the next experiment 139 

was to conduct in situ visualization and analyses of differences in the biofilm 3D architecture of 140 

these strains. For this purpose, each of the six recently circulating strains and Bp536 was 141 

transformed with a GFP coding plasmid followed by culture on glass cover slips under agitating 142 

conditions and initial attachment and the biofilms formed were compared. 143 

We first examined differences in initial attachment by incubating the strains on the 144 

substrate for 1h followed by microscopic observation. As shown in Fig. 3A, all six recently 145 

isolated strains adhered to the surface by forming aggregates, which were largely absent from 146 

Bp536. The formation of small clusters by these strains is consistent with their higher AI values. 147 

Quantification of bacteria attached to the glass cover slips revealed similar numbers of cells for 148 

all the strains including Bp536 (Fig. 3B). This suggests that the manner in which recently 149 

isolated strains attach to the surface is different than that of Bp536.  150 

To observe and quantify the 3D structure of biofilms, the growth of biofilms was 151 

examined by Confocal Laser Scanning Microscopy (CLSM) at 24h intervals over a time period 152 

of 96h (Fig. 4). After 24h of growth, for Bp536, almost the entire surface area was completely 153 

covered with green cells which appeared to exist as a uniform monolayer. In contrast, all six 154 

recently isolated strains were present on the coverglass surface in the form of clustered cells and 155 

many areas of the coverglass were observed to be unoccupied. For theses strains, small pillars of 156 

cells, a characteristic architectural feature of Bordetella biofilms were also found (23, 27). At 157 
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48h of growth, while minute cell-clusters and thin pillars were observed for Bp536, the recently 158 

isolated strains continued to increase in thickness and cell density resulting in the visualization of 159 

thicker and more structured biofilms. After 72 and 96h of culture, while Bp536 achieved a more 160 

complex biofilm structure involving the formation of some water channels, the recently isolated 161 

strains continued to form complex biofilm structures with large and irregularly shaped clusters 162 

and longer cell pillars.  163 

Interestingly, in addition to structural differences, region-specific variations in the biofilm 164 

features were also observed among the recently isolated strains. At time-points later than 24h, for 165 

the strains isolated in the USA (H921, H973 and STO1-SEAT0004), large and irregularly shaped 166 

cell aggregates continued to be observed during the entire time course of biofilm formation 167 

whereas for the Argentinean strains (Bp462, Bp892 and Bp2751) almost the entire surface area 168 

was green revealing a thick uniform layer of cells.  169 

Quantitative analysis of biofilm architecture 170 

In order to achieve a quantitative assessment of the observed microscopic differences in biofilm 171 

structure, CLSM-generated images were analyzed for four variables of biofilm architecture, 172 

biomass, maximum thickness, average thickness and roughness coefficient by the COMSTAT2 173 

image analysis program (Fig. 5) (38). Overall, compared to Bp536 and at all time-points of 174 

biofilm formation, maximum thickness and average thickness were significantly higher for the 175 

recently isolated strains. The only exception was Bp892 for which, the maximum biofilm 176 

thickness was not significantly different from that of Bp536 at 24h. Biomass was significantly 177 

higher for all clinical isolates at 96h. The roughness coefficient, a measure of how much the 178 

biofilm thickness varies and thus a measure of biofilm heterogeneity varied the greatest between 179 
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Bp536 and the clinical strains. In general, for the Argentinean strains, the roughness coefficient 180 

was lower than Bp536 whereas for the USA strains it was higher at many of the time points. The 181 

differences in roughness coefficient between the Argentinean and USA strains correlated with 182 

microcolonies separated by empty spaces as observed by CSLM. Overall, these results suggest 183 

that the B. pertussis clinical strains form biofilms differently than the reference strain and 184 

differences in biofilm structure are observed between strains isolated from USA and Argentina.  185 

 186 

Dispersal of biofilms by pronase E, DNase I and sodium metaperiodate. 187 

Previously, we have shown that proteins, DNA and polysaccharides are components of the B. 188 

pertussis biofilm matrix and promote the stability of biofilms formed by Bp536 (21, 23-25). To 189 

address the functional roles of these components in stabilizing the biofilms of the recently 190 

isolated strains, we studied the effect of pronase E, DNase I and sodium metaperiodate (NaIO4) 191 

on dispersal of pre-formed mature biofilms. Ninety-six hour old biofilms were incubated either 192 

with these reagents or with the respective buffer solutions for 2h at 37C followed by CV 193 

staining to quantitate the stained biomass. Compared to Bp536, for five of the six recently 194 

isolated strains, pronase E treatment led to lower levels of biofilm dispersal (50.3% for Bp536 195 

and varying between 25.3-32.3% for Bp462, Bp2751, H921, H973, STO1-SEAT0004, 196 

respectively). For the strain Bp892 however, pronase E treatment was sufficient to disperse the 197 

biofilms to similar levels as observed for Bp536 (Fig. 6A). 198 

Sodium metaperiodate treatment resulted in two different levels of biofilm dispersal. For 199 

three of the recently isolated strains (Bp462, Bp2751 and H921), dispersion of biofilms was 200 

similar to that observed for Bp536 (varying between 31.7-37.6%). For the other three strains 201 
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(Bp892, H973 and STO1-SEAT0004) however, NaIO4 treatment resulted in significantly higher 202 

levels (varying between 60.4-66.9%) of biofilm dispersal (Fig. 6B). 203 

Similar to Bp536, for four of the recently isolated strains (Bp892, Bp2751, H973 and 204 

STO1-SEAT0004), greater than 50% of biofilms were dispersed by treatment with DNase I. For 205 

Bp892, incubation with DNase I led to greater than 85% dispersal. For two of the isolates 206 

(Bp2751 and Bp462), DNase I had somewhat of a moderate effect (35.4 and 40%, respectively) 207 

on biofilm dispersal (Fig. 6C).  The varying levels of biofilm dispersal as a result of incubation 208 

with the above chemicals are probably because of the differences in biofilm formation between 209 

various strains. Taken together, these results suggest that similar to Bp536, recently isolated 210 

strains have protein, DNA and carbohydrate content in their biofilm matrix. 211 

Recently isolated strains exhibit differential expression of Bordetella factors involved in 212 

biofilm formation and pathogenesis 213 

Critical among factors that contribute to robust biofilm formation in B. pertussis are FHA, 214 

adenylate cyclase (AC) toxin and Bps polysaccharide (24, 27, 39). FHA and AC toxin promote 215 

and inhibit B. pertussis biofilm formation, respectively (24, 39). Bps is critical for the stability 216 

and maintenance of the three-dimensional structure of B. pertussis biofilms (27). In addition to 217 

their roles in biofilm formation, FHA, AC toxin and Bps also function as critical virulence 218 

factors for B. pertussis (27, 28, 40-42). Thus, we quantitated the expression levels of these 219 

factors in the clinical strains. As a negative control, the Bvg
-
 phase locked and the bps strain 220 

were used. These strains do not express FHA and AC toxin and Bps, respectively. 221 

We performed a whole-cell ELISA, to determine the levels of cell-surface associated FHA. As 222 

shown in Fig. 7A, compared to Bp536, all the recently isolated strains produced significantly 223 
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higher amounts (between 2.6 and 3.3-fold) of FHA. The expression of FHA was at background 224 

levels in this strain. As shown in Fig. 7B, compared to Bp536, all recent isolates displayed lower 225 

AC toxin activity. 226 

 Changes in the expression of the bps locus were determined by qRT-PCR by comparing 227 

levels of the bpsA transcript in Bp536 and the recently circulating strains. In two of the six 228 

recently isolates, expression of bpsA was significantly higher (5.4 and 1.6-fold higher in H921 229 

and H973, respectively) (Fig. 7C). In four other strains, there were no significant differences in 230 

the expression levels of bpsA transcript. Bps production was detected by immunoblot in all of the 231 

recently isolated strains (Fig. 7D). Using ELISA, we failed to precisely and reproducibly 232 

quantitate Bps levels in the recently circulating isolates. Taken together, these results suggest 233 

that hyperbiofilm formation in recently isolated strains is associated with increased expression of 234 

genes/proteins that promote biofilm formation and decreased activity of the protein that inhibits 235 

biofilm formation.  236 

 237 

Recently isolated strains exhibit hyper adhesion to respiratory epithelial cells of human 238 

origin 239 

The recently isolated strains attached and formed higher levels of biofilms on artificial surfaces. 240 

Additionally, FHA was produced at higher levels in the clinical strains. FHA promotes the 241 

adherence of B. pertussis to epithelial cells (43). We hypothesized that compared to Bp536, the 242 

recently circulating strains will exhibit increased cellular adherence to epithelial cells. To test 243 

this hypothesis, we compared attachment of these strains to human alveolar epithelial cells 244 

(A549). As shown in Fig. 8, all the recently isolated strains adhered to A549 cells to a greater 245 
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extent than did Bp536. However, these differences in cellular attachment were statistically 246 

significant only for the strains Bp462, H973 and STO1-SEAT0004. As expected, the Bvg
-
 phase 247 

locked strain which does not express FHA and other Bordetella adhesins exhibited very low 248 

levels of attachment to the epithelial cells.  249 

 250 

Enhanced colonization of the mouse respiratory tract by recently isolated strains 251 

To determine the role of hyperbiofilm phenotype in affecting the outcome of infection, we 252 

compared the colonization of Bp536 to the mouse respiratory tract to Bp462 and STO1-253 

SEAT0004. Groups of eight to ten week old male and female mice were intranasally inoculated 254 

separately with the strains, and the bacterial loads of the nose, trachea and lungs were determined 255 

at 4 and 7 days post-inoculation (dpi) (Fig. 9). Consistent with previously published results, high 256 

bacterial loads of Bp536 were recovered from all three organs at 4 dpi (Fig. 9A). When 257 

compared to Bp536, while the two clinical strains colonized the nose and trachea at higher 258 

numbers at 4 dpi, no significant differences were found in bacterial numbers harvested from the 259 

lungs between any of the strains at this time point. At 7 dpi, all the three strains continued to 260 

colonize the respiratory organs at high numbers and the two recent isolates colonized the nose at 261 

higher numbers than Bp536 (Fig. 9B). Previously we have shown the existence of biofilms of B. 262 

pertussis in the mouse nose and trachea (24, 25, 27) and found that mutants defective in biofilm 263 

formation invitro are defective in colonization of the respiratory tract (24, 27). Thus, we propose 264 

that the observed hyperbiofilm phenotype of recent isolates contributes to the enhanced 265 

respiratory tract colonization. 266 

  267 
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DISCUSSION 268 

Majority of studies on the biology and pathogenesis of the obligate human pathogen B. pertussis 269 

have been conducted with the strain BpTohama I and its derivatives. This strain originally 270 

isolated in Japan in the 1950s is a major source of pertussis vaccines. It has been suggested that it 271 

does not represent B. pertussis species (14). Although considerable effort is currently being 272 

dedicated towards genome sequencing and categorization of genomic differences between 273 

circulating clinical strains and domesticated laboratory strains, very little is known regarding 274 

their physiological and pathogenic differences. Biofilm formation is considered to be a survival 275 

strategy that allows enhanced respiratory tract colonization, persistence, transmission and 276 

circulation of B. pertussis in humans (24, 27-29). Characterization of the underlying molecular 277 

mechanisms, factors involved and the assessment of the relationship between biofilms and 278 

pathogenesis in currently circulating clinical isolates is important for the development of more 279 

effective vaccines and therapeutic alternatives to stem the resurgence of pertussis.  280 

In this study, we utilized B. pertussis strains isolated during the period of 2001-2012 281 

across two countries, Argentina and USA. While acellular vaccines are exclusively employed for 282 

immunization in the USA, whole-cell vaccines are used for the first five immunizations followed 283 

by the acellular vaccine as a booster for 11 year olds in Argentina. Despite having two different 284 

routine pertussis immunization programs, both these countries have experienced a steady 285 

increase in pertussis cases over the last decade. Thus, simultaneous comparison of recently 286 

circulating strains from these two countries is likely to shed light not only on variations in 287 

microbial pathogenic mechanisms but also on how bacterial pathogens evolve to evade and 288 

escape from vaccine-induced immunity. 289 
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 In comparison to the reference strains, all the strains irrespective of the region and the 290 

year of isolation were characterized by hyperbiofilm formation. We propose that hyperbiofilm 291 

formation is a highly conserved strategy employed by B. pertussis for surface adherence and that 292 

this phenotype is maintained independent of the types of vaccines used for immunization.  293 

The mechanisms underlying increased biofilm formation and strain-dependent 294 

differences in biofilm structure of B. pertussis was unknown until now. In this report, a positive 295 

correlation was found between hyper bacterial aggregation and enhanced biofilm formation in 296 

six of the selected currently circulating strains suggesting that both these processes depend on the 297 

same physical adhesive forces and that these strains may contain similar extracellular matrix that 298 

leads to enhanced cell-cell interactions. Structural analyses of biofilms by CLSM revealed 299 

significant regional differences in the biofilm architecture. In general, the Argentinean strains 300 

formed more compact and regularly shaped biofilms, while the USA strains developed distinct 301 

microcolonies and more structured and heterogeneous biofilms. The development of complex 302 

biofilm architecture has been linked to enhanced anti-microbial properties (44, 45). It remains to 303 

be determined if the differences in biofilm architecture between strains from USA and Argentina 304 

are due to bacterial adaptation to dissimilar vaccination programs and if these result in 305 

differential resistance to components of host immunity.  306 

 FHA and AC toxin have been shown to positively and negatively control biofilm 307 

formation in B. pertussis, respectively (24, 39). By promoting cell-surface and inter-bacterial 308 

adhesion, FHA promotes biofilm formation (24). AC toxin inhibits B. pertussis biofilm 309 

formation by directly interacting with FHA (39). We found an inverse correlation between FHA 310 

production and AC toxin activity in recently isolated clinical strains which were characterized by 311 

the production of higher levels of FHA and lower AC toxin activity. The observed differences in 312 
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FHA levels and AC toxin activity could also explain the hyperaggregating property of the 313 

clinical strains. FHA is responsible for autoaggregation in B. pertussis (46) and autoaggregation 314 

in B. pertussis is inhibited by addition of ACT (39). We propose that by inversely controlling the 315 

production of a biofilm inhibitory and promoting factor, the clinical strains are able to display 316 

higher levels of autoaggregation and biofilm formation. A similar link between production of 317 

FHA and AC toxin and hyperbiofilm formation was recently reported by us in a cystic fibrosis 318 

isolate of B. bronchiseptica which was characterized by higher expression of the fhaB and the 319 

absence of the cyaA gene from the genome (36). To our knowledge, this report is the first to 320 

document the lower AC toxin activity in recently circulating strains of B. pertussis. It will be 321 

highly informative to determine if this property is conserved in a larger number of strains and in 322 

strains isolated from other countries. The observed differences in the levels of FHA and AC 323 

toxin activity raise an interesting question regarding the mechanism by which the regulation of 324 

these two genes is maintained in the clinical strains. 325 

 The Bordetella bpsABCD locus required for the synthesis of the Bps polysaccharide is 326 

critical for the stability and maintenance of the complex architecture of biofilms (23, 47, 48). 327 

Compared to Bp536, two of the hyperbiofilm formers had higher levels of bpsA expression 328 

whereas in other four the expression of this gene was similar. All the strains produced Bps. 329 

Targeted mutagenesis will offer detailed insights on the relative contribution of individual genes 330 

in hyperbiofilm formation of these strains.   331 

A striking result from the present study is the discovery of a link between hyperbiofilm 332 

forming ability of bacteria and enhanced pathogenic phenotypes. First, many of the hyperbiofilm 333 

forming strains from both Argentina and USA exhibited increased adherence to human epithelial 334 

cells. The increased cellular adherence of the recently isolated strains is most likely a direct 335 
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result of enhanced production of FHA. FHA facilitates attachment of B. pertussis to a variety of 336 

multiple cell types and extracellular structures in the respiratory epithelium (43, 49, 50). 337 

Given the central role that biofilms play in promoting enhanced resistance to chemicals, 338 

antimicrobial compounds and components of host immunity, it is reasonable to hypothesize that 339 

a hyperbiofilm phenotype will result in better survival in host tissues and organs. A few studies 340 

have directly tested this hypothesis and the results obtained were generally not supportive. 341 

Bacterial mutants that display increased biofilm formation are either equally or significantly less 342 

virulent than wild type strains (51-57). Similarly, while the increased in vitro cellular adherence 343 

of the hyperbiofilm forming clinical strains should in theory lead to enhanced colonization in an 344 

animal model, previously we did not find this to be the case. A clinical strain of B. 345 

bronchiseptica despite exhibiting higher levels of biofilms and epithelial cell adherence than the 346 

laboratory strain was deficient in early colonization of the mouse respiratory tract (36). In this 347 

study, two of the recently isolated strains that displayed hyperbiofilm and hyper adherence 348 

phenotypes colonized the mouse nose and trachea at higher numbers. Whether the hyperbiofilm 349 

forming ability observed on artificial surfaces and higher bacterial numbers of the clinical strains 350 

in mouse nose and trachea correlate with quantitative and qualitative differences in nasal and 351 

tracheal biofilms needs to be determined.  352 

In conclusion, we have for the first time demonstrated an association between higher 353 

levels of biofilm formation in bacteria with enhanced colonization in an animal model of 354 

infection. Based on the data obtained, we propose some mechanistic explanations for the 355 

continued circulation of B. pertussis and the resurgence of pertussis. Hyperaggregative, 356 

hyperbiofilm and hyper epithelial cell adhesive properties of the clinical strains most likely 357 

results in the formation of robust organ-adherent biofilm communities in the nose and trachea. 358 
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These biofilm-borne bacteria would survive better in the respiratory tract because of evasion of 359 

and escape from immune defenses leading to nasopharyngeal carriage. Droplet or airborne routes 360 

are principal ways of B. pertussis transmission. Efficient generation of and optimal particle size 361 

are critical determinates for successful host-host transmission. Droplets are generally defined as 362 

being  5 m size and droplet sizes of diameters 30 m of greater can remain suspended in the 363 

air. B. pertussis is a relatively small bacterium (0.4-0.8 m) (58). We speculate that increased 364 

aggregation of the clinical strains in the respiratory tract could generate optimally-sized particles 365 

which will resist desiccation during transmission of infectious particles. Thus, a combination of 366 

enhanced respiratory tract survival followed by enhanced transmission has led to the resurgence 367 

of pertussis. Finally, the conservation of hyperbiofilm phenotype in B. pertussis strains in 368 

multiple continents with different vaccine and immunization schedules highlights the urgent 369 

need for continued research and development of alternative therapeutics and vaccines targeted 370 

towards the biofilm lifestyle.   371 
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MATERIALS AND METHODS 372 

Ethics Statement 373 

Housing, husbandry and experiments with animals were carried out in accordance with the 374 

guidelines approved by the Institutional Animal Care and Use Committee of Wake Forest School 375 

of medicine. Bacterial strains were collected by regional Microbiology Laboratories in Argentina 376 

and at Wake Forest School of Medicine as part of the patients' usual care, without any additional 377 

testing for the present investigation. De-identified organisms were provided to the investigators 378 

and the information received by the investigators was not individually identifiable. The research 379 

does not meet the federal definition of research involving human subject research as outlined in 380 

the federal regulations 45 CFR 46.  381 

 382 

Strains and growth conditions 383 

Strains used in this work are listed in Table 1. S49560 and M3984 were isolated in 2005 at 384 

WFSM from a 38 day old female baby (with coughing spells, apnea events and cyanosis) and a 7 385 

week old female baby (with cough and respiratory distress), respectively. Argentinean strains 386 

were isolated at La Plata Children’s Hospital (Hospital Interzonal de Agudos Especializado en 387 

Pediatría “Sor María Ludovica”) and the patient ages varied between 6 and 16 weeks old. B. 388 

pertussis strains were maintained on Bordet-Gengou agar (BGA) supplemented with 10% v/v of 389 

defibrinated sheep blood. For liquid cultures, strains were grown in Stainer-Scholte (SS) broth 390 

(35, 59). E. coli strains were grown in Luria–Bertani medium. When appropriate, antibiotics 391 
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were added to maintain plasmids and for strain selection on agar plates, streptomycin, 50 µg mL
-

392 

1
; kanamycin, 25 µg mL

-1
; cephalexin, 40 µg mL

-1
. 393 

Biofilm formation assays 394 

For microtitre dish assay of biofilm formation, 100 µL of bacterial suspension prepared at an 395 

OD650 of 1.0 were incubated statically for 4h at 37ºC. After this initial attachment step, medium 396 

was carefully removed, fresh SS medium was added and plates were incubated at 37ºC with 397 

shaking at 90 rpm. After every 24h of growth, medium was replaced with fresh SS medium. 398 

After indicated period of incubation, planktonic bacteria were removed and OD650 was measured. 399 

Adhered biomass was quantified by CV staining as previously described (60). Three independent 400 

experiments with quadruplicates for each strain were performed. 401 

Autoaggregation assay 402 

Bacteria were cultured in SS medium with heptakis (2,6-di-O-methyl-β-cyclodextrin) and 403 

supplement for 24h (61). Cells were harvested by centrifugation, washed and resuspended in 404 

only SS medium at an OD650 of 1.0 followed by static incubation at room temperature. At 2, 5 405 

and 24h of incubation, 100µL of the medium was taken out from the top layer of the suspension 406 

and OD650 was measured. Autoaggregation index (AI) was calculated by (ODt0-ODt)/ODt0, 407 

(where t0 is initial OD and t is OD measured at the designated time point). Three independent 408 

experiments were performed in duplicate for each sample. Statistical significance was evaluated 409 

by one-way ANOVA. 410 

 411 

 412 
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Transformation of B. pertussis strains with plasmidp GBSp1-GFP 413 

B. pertussis strains were transformed by electroporation (62) of plasmid pGB5P1-GFP (63). 414 

Bacterial colonies were selected on BG agar containing kanamycin, and cultured in SS medium. 415 

GFP expression was confirmed by fluorescence microscopy. 416 

Adhesion to abiotic surfaces 417 

GFP-labeled strains were grown overnight in SS medium with kanamycin and used to prepare 418 

cell suspensions of OD650 of 0.2. Two mL of bacterial suspension was added to individual wells 419 

of 6 well cell culture plates containing coverglasses (22 x 22 mm) and after 1h of incubation at 420 

37ºC, each well was washed twice with PBS. Coverglasses were mounted on glass slides with 421 

ProLong Gold antifade reagent (Invitrogen) and observed with a Nikon Eclipse microscope. 422 

Adhered cells were counted with ITCN plug-in (64), run by ImageJ (65). At least three 423 

independent experiments were performed by duplicate for each strain, where four random 424 

regions were chosen for bacterial counting. 425 

Structural analysis of biofilms by CLSM 426 

Biofilms were grown on 22 x 22 mm coverglasses in 6 well plates in SS medium supplemented 427 

with kanamycin. Each well was inoculated with a bacterial suspension at an OD650 of 1.0, 428 

followed by 4h of static incubation at 37°C, then the suspensions were removed and fresh 429 

medium was added. After every 24h of growth, the medium was replaced with fresh SS medium. 430 

Coverglasses were washed, mounted as described above, stored at 4°C for 24h and visualized 431 

with a Nikon Ti-Eclipse confocal microscope. Quantitative data corresponding to structural 432 
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features of the biofilms were acquired with COMSTAT2 (38). Each experiment was performed 433 

at least three times. 434 

Enzymatic treatment of biofilms 435 

Biofilms grown in microtitre plates for 96h were treated with DNase I (40 U) (25), pronase E (1 436 

mg/mL) or sodium metaperiodate (40 mM, pH 5.0) for 2h at 37°C. Controls were treated with 437 

respective reaction buffers, 10 mM Tris-HCl pH 7.6, 2.5 mM MgCl2, 0.5 mM CaCl2 for DNase I; 438 

10 mM Tris-HCl pH 7.5 for pronase E and with H2O for sodium metaperiodate. After each 439 

enzymatic treatment, the remaining biofilm was quantified by staining with CV. 440 

Enzyme-Linked Immunosorbent Assay (ELISA) 441 

FHA production was determined by ELISA as previously described (66, 67). Briefly, 100 µL of 442 

heat-inactivated cells (OD650 of 0.05 for FHA) in PBS were added to strip plates (Corning 443 

EIA/RIA stripwell plate) and incubated overnight at 4ºC, washed with PBS buffer containing 444 

0.05% Tween 20 (PBST) followed by blocking with 5% skim milk for 1h at 37ºC. A polyclonal 445 

serum raised in mouse (1:20,000 dilution) against purified FHA (Kaketsuken) was used as 446 

primary antibody. Antibody dilutions were prepared in 5% skim milk in PBST. As a control, 447 

non-immune serum was used. After 2h of incubation at 37ºC, plates were washed with PBST, the 448 

secondary antibody (HRP-conjugated goat anti-mouse IgG; 1:20,000 dilution) was added 449 

followed by incubation for 2h at room temperature. After washing with PBST, 100 µL of 450 

tetramethyl-benzidine (TMB, Sigma) was added to each well and incubated in dark for 20 min 451 

followed by addition of 1 MH2SO4 to stop the reaction. Absorbance was measured at 450 nm. 452 

For FHA protein quantification, a linear standard curve was prepared using different 453 

concentrations of purified FHA. 454 
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Quantitation of Adenylate cyclase enzymatic activity  455 

B. pertussis clinical strains were grown to mid-log phase, until an OD650 of 0.7-0.8. AC activity 456 

was determined as previously reported (68). 457 

RNA preparation, cDNA synthesis and qPCR 458 

B. pertussis strains were grown under shaking conditions to an OD650 of 1.0, placed immediately 459 

on ice, centrifuged at 4°C and the bacterial pellets were lysed in RLT buffer (Qiagen). RNA was 460 

purified using the Qiagen RNeasy kit and treated with RQ1 DNase I (Promega) for 45 min at 461 

37°C to obtain DNA-free RNA. cDNA was synthesized with random hexamers and 462 

SuperScriptIII reverse transcriptase (Invitrogen) as described earlier (69). Differential expression 463 

of genes between the strains Bp536, Bp462, Bp892, Bp2751, H921, H973 and STOI-SEAT0004 464 

was analyzed by means of Pfaffl method (70), following real-time PCR quantification with 465 

SYBR Green. rpoD was used as a housekeeping gene for normalization. qPCR analysis was 466 

performed with three biological and two technical replicates. Primers used for qPCR are listed in 467 

Table 2. 468 

Immunoblot analyses 469 

Detection of Bps by Immunoblot was performed as previously described (23, 27). The 470 

membrane was probed with a 1:5,000 dilution of a goat antibody raised against S. aureus PNAG 471 

conjugated to diphtheria toxoid. The secondary antibody used was a horseradish peroxidase-472 

conjugated mouse anti-goat immunoglobulin G (IgG) antibody (Pierce) diluted 1:20,000 and 473 

detected with the Amersham ECL (enhanced chemiluminescence) Western blotting system 474 

 475 
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Bacterial adhesion to epithelial cells  476 

Human alveolar epithelial cells (A549) were cultured at 37°C under 5% CO2 in Dulbecco's 477 

modified Eagle's medium supplemented with 10% FBS and 4 mM of L-glutamine. A549 cells 478 

were harvested at 90% confluency and approximately 2×10
5
 cells were seeded in 24 well cell 479 

culture plates followed by incubation overnight. 2×10
6 

CFU of B. pertussis were added to the 480 

wells, centrifuged at 900 rpm for 5 min to facilitate contact between bacteria and epithelial cells 481 

followed by incubation at 37°C for 15 min to allow bacterial attachment to A549 cells. The 482 

media was removed and the wells were washed four times with sterile PBS to remove any 483 

nonattached bacteria. The eukaryotic cells were then lysed with 0.05% saponin and the mixture 484 

was plated on BG-agar containing 10% blood and cephalexin for enumeration of attached 485 

bacteria. Adhesion assays were performed by duplicate, three times. 486 

Animal experiments 487 

Housing, husbandry and experiments with animals were carried out in accordance with the 488 

guidelines approved by the Institutional Animal Care and Use Committee of Wake Forest School 489 

of medicine. Groups of (5-8) of 8-10 weeks old male and female C57BL/6 mice were used for all 490 

the experiments. Mice were intranasally inoculated with 50 µl of a bacterial suspension with 491 

approximately 5×10
5 

CFU of the indicated B. pertussis strains. At 4 days post-infection, mice 492 

were sacrificed followed by harvesting of nasal septum, trachea and three right lung lobes. 493 

Tissues were homogenized in PBS containing 1% casein and plated on BG agar containing 10% 494 

blood and streptomycin (for Bp536) or cephalexin (for clinical strains). After 3-5 days of growth 495 

at 37°C colonies were enumerated. Statistical significance was determined by one-way ANOVA 496 

and data were determined to be significant if P< 0.05.  497 
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FIGURE LEGENDS 510 

FIG 1. Biofilm forming capacity of B. pertussis strains. (A) Formation of a bacterial ring at the 511 

air-liquid interface of glass culture tubes. (B) Microtitre assay of biofilm formation at 96h by B. 512 

pertussis strains. Each data point represents the average value of three independent experiments 513 

performed in quadruplicates; error bars indicate standard deviation. Significant differences were 514 

assessed by one-way ANOVA and Bonferroni posttest. Asterisks designate P values. **, <0.01 515 

and ***, <0.001.  516 

FIG 2. Quantification of autoaggregation of B. pertussis strains. Each bar represents the mean 517 

value of at least three independent experiments performed in duplicate. Error bars represent 518 

standard deviations. Statistical differences were assessed by one-way ANOVA and Bonferroni 519 

posttest. Asterisks designate P values. **, <0.01 and ***, <0.001.  520 

FIG 3. Fluorescence microscopy and quantification of early bacterial attachment. (A) Attached 521 

GFP-labeled bacterial cells were observed by fluorescence microscopy. (B) Cells were counted 522 

by means of the ITCN plug-in, run by ImageJ. Data are average values of at least three 523 

independent experiments performed in duplicates. Four random regions were chosen for bacterial 524 

counting. Error bars indicate standard deviation.  525 

FIG 4. CLSM micrographs of B. pertussis biofilms. GFP-labeled bacterial strains were grown on 526 

coverglasses in six well plates for the designated time points. Biofilms were visualized in situ by 527 

CLSM microscopy. CLSM image stacks were acquired at 0.9 µm z-intervals. Xy and xz 528 

representative focal planes are shown.  529 

FIG 5. COMSTAT analyses of B. pertussis biofilms. CLSM image stacks were acquired at 0.9 530 

µm z-intervals and analyzed by COMSTAT2. Average values of parameters from CLSM image 531 
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stacks derived from at least three independent experiments are shown with standard errors. P 532 

values were determined using two-way ANOVA. (A) Average thickness and (B) Maximum 533 

thickness; these values are calculated only on the biomass (without counting uncovered area). 534 

(C) Biomass, this value represents the biomass volume divided by the area of the substratum. (D) 535 

Roughness coefficient, this value represents the variability in the height of the biofilm.  536 

FIG 6. Biofilm dispersal by matrix dissolving agents. Ninety six hour biofilms were treated with 537 

pronase E in Tris buffer (A), 40 mM of sodium metaperiodate (NaIO4) in H2O (B) and DNase I 538 

in reaction buffer (C) for 2 h at 37°C (black bars). Biofilms were treated with respective reaction 539 

buffers as controls (white bars). Biofilm reduction is presented as percentage value of the 540 

respective strain incubated with buffer only. Average values are shown from one representative 541 

assay of three independent replicates, with their respective standard deviations. Significance was 542 

assessed by two-way ANOVA, Asterisks designate P values. *, <0.05; **, <0.01 and ***, 543 

<0.001.  544 

FIG 7. Determination of the levels of biofilm associated factors/genes in B. pertussis strains. (A) 545 

Cell-surface associated FHA determination by ELISA. Average values of three replicates are 546 

presented with the respective standard deviation. (B) AC toxin activity quantification. AC toxin 547 

levels were assessed by enzymatic activity (pmoles cAMP/10min/10µl/OD), as described earlier 548 

(68). (C). bpsA expression and production. bpsA transcript levels were determined by qPCR and 549 

Pfaffl method. Asterisks designate P values. *, <0.05; **, <0.01 and ***, <0.001. (D) Dot blot of 550 

Bps. Production of Bps was detected as described previously (27). 551 

FIG 8. Adherence of B. pertussis strains to epithelial cells. Adhesion assays were performed 552 

with A549 epithelial cell lines. Each strain was incubated at a multiplicity of infection of 10. 553 
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Results are expressed as the proportion of adherent bacteria to the original inoculum. Each data 554 

point is the average of three independent experiments performed in duplicate. Error bars indicate 555 

the standard deviations. Statistical differences were assessed by one-way ANOVA (p<0.0001) 556 

and the Student’s t-Test with Bonferroni correction as post hoc. Asterisks designate P values. *, 557 

<0.05, **, <0.01 and ***, <0.001.  558 

FIG 9. Colonization of mouse respiratory tract by Bp536, Bp462 and STO1-SEAT0004. Groups 559 

of C57BL/6 were intranasally inoculated with approximately 5×10
5
 CFU in 50 µL of PBS. After 560 

4 (A) and 7 days post-inoculation (B), animals were sacked and bacterial loads were determined 561 

in nasal septum, trachea and lung. Horizontal bars represent the average value for each group. 562 

Significance was analyzed by means of one-way ANOVA and Dunnett’s posttest. Asterisks 563 

designate P values. *, <0.05; **, <0.01 and ***, <0.001. 564 

 565 

566 
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TABLE 1Strains used in this study. 567 

Strains Source Year of isolation/reference 

BpTohama I Laboratory reference strain 1954 

Bp536 
Laboratory reference strain,  

Sm
r
 derivative of Tohama I 

(71) 

Bp369 (Bvg
-
) derivative of Tohama III (72) 

ΔfhaB ΔfhaB mutant (73) 

Δbps Δbps mutant (27) 

Bp462 Argentina 2006 

Bp479 Argentina 2007 

Bp612 Argentina 2008 

Bp892 Argentina 2007 

Bp955 Argentina 2001 

Bp1938 Argentina 2003 

Bp2524 Argentina 2004 

Bp2723 Argentina 2001 

Bp2751 Argentina 2004 

Bp2770 Argentina 2001 

H918 USA 2012 (74) 

H921 USA 2012 (74) 

H973 USA 2012 (74) 

H987 USA 2012 (74) 

I002 USA 2012 (74) 

STO1-CHOC0008 USA 2010 (74) 

STO1-SEAT0004 USA 2011 (74) 

M3984 USA 2005 

S49560 USA 2005 

  568 
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TABLE 2 Primer sequences 569 

Primer Sequence 

rpoD-Fw 5´- ATGGGCATCCGCTTCACG 

rpoD-Rv 5´- CTTCGTCCAACACCCAC 

bpsA-Fw 5´- CGCTGCTGACCATGGATTT 

bpsA-Rv 5´- CTGGTGTACAGCATGGTGTTGA 

  570 
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