70 research outputs found

    Antidiabetic potential of mucilage fraction extracted from Astragalus gyzensis seeds

    Get PDF
    The objective of the current work is to extract a new mucilage fraction from Astragalus gyzensis Bunge. seeds, which are collected from the El-Oued province (septentrional Algerian Sahara) and evaluated for their antidiabetic potential. The mucilage fraction is obtained using hot water extraction followed by alcoholic precipitation of polysaccharides by cold ethanol (96%). The primary investigation was performed by describing the main structural features of the extract through colorimetric assays, Fourier-transform infrared spectroscopy and thin-layer chromatography analysis using two systems. Biological activity was also monitored by antidiabetic activity by testing the inhibition of α-amylase and α-glucosidase enzymes in vitro. The extraction yield was 20.69%. The chemical composition mainly consisted of 78.60±0.29% carbohydrates, among them 63.92±0.67% neutral sugar, 15.78±0.76% uronic acid, 8.08±0.04% proteins and 2.57±0.05% phenolic compounds. The results obtained by thin-layer chromatography analysis showed the dominance of mannose and galactose. Fourier-transform infrared spectrum showed characteristic bands expected galactomannans. The investigations highlighted the antihyperglycemic effect in a dose-dependent manner by the inhibition of the α-amylase enzyme (IC50=0.8±0.005 mg/mL). These factors make it suitable for the industrial application of dietary supplement fiber made for diabetic individuals. DOI: http://dx.doi.org/10.5281/zenodo.761853

    Front Microbiol

    Get PDF
    Brettanomyces bruxellensis is the main spoilage microbial agent in red wines. The use of fungal chitosan has been authorized since 2009 as a curative treatment to eliminate this yeast in conventional wines and in 2018 in organic wines. As this species is known to exhibit great genetic and phenotypic diversity, we examined whether all the strains responded the same way to chitosan treatment. A collection of 53 strains of was used. In the conditions of the reference test, all were at least temporarily affected by the addition of chitosan to wine, with significant decrease of cultivable population. Some (41%) were very sensitive and no cultivable yeast was detected in wine or lees after 3 days of treatment, while others (13%) were tolerant and, after a slight drop in cultivability, resumed growth between 3 and 10 days and remained able to produce spoilage compounds. There were also many strains with intermediate behavior. The strain behavior was only partially linked to the strain genetic group. This behavior was little modulated by the physiological state of the strain or the dose of chitosan used (within the limits of the authorized doses). On the other hand, for a given strain, the sensitivity to chitosan treatment was modulated by the chitosan used and by the properties of the wine in which the treatment was carried out.Recherches sur l’origine et les effets secondaires des propriĂ©tĂ©s stabilisantes du chitosane fongique dans le vi

    Génomique fonctionnelle chez Leishmania (Application à l'étude de la fonction et régulation génique, Recherche des fonctions centromériques)

    No full text
    MONTPELLIER-BU MĂ©decine (341722104) / SudocMONTPELLIER-BU MĂ©decine UPM (341722108) / SudocPARIS-BIUM (751062103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    A Novel Microtubule-Depolymerizing Kinesin Involved in Length Control of a Eukaryotic Flagellum

    Get PDF
    International audienceCilia and flagella are complex, microtubule (MT)-filled cell organelles of which the structure is evolutionarily conserved from protistan cells to mammalian sperm and the size is regulated. The best-established model for flagellar length (FL) control is set by the balance of continuous MT assembly and disassembly occurring at the flagellar tip. Because steady-state assembly of tubulin onto the distal end of the flagellum requires intraflagellar transport (IFT)—a bidirectional movement of large protein complexes that occurs within the flagellum—FL control must rely upon the regulation of IFT. This does not preclude that other pathways might ‘‘directly’’ affect MT assembly and disassembly. Now, among the super family of kinesins, family-13 (MCAK/KIF2) members exhibit a MT-depolymerizing activity responsible for their essential functions in mitosis. Here we present a novel family-13 kinesin from the flagellated protozoan parasite Leishmania major, that localizesessentially to the flagellum, and whose over expression produces flagellar shortening and knockdown yields long flagella. Using negative mutants, we demonstrate that this phenotype is linked with the MT-binding and depolymerizing activity of this kinesin. This is the first report of an effector protein involved in FL control through a direct action in MT dynamics, thus this finding complements the assembly–disassembly model

    Influence of Physicochemical Characteristics of Neem Seeds (Azadirachta indica A. Juss) on Biodiesel Production

    No full text
    International audienceThe aim of this work is to study the influence of the physicochemical characteristics of neem seeds, according to their mass and oil content, on the production of biodiesel. After the physical characterization of the seeds and extraction of the oil (triglycerides), biodiesel was produced from crude neem seed oil by transesterification with ethanol in the presence of sodium hydroxide. This study shows that the physicochemical characteristics of these seeds vary according to the origin of the samples. The seeds from Zidim, with a mass average of 200 seeds evaluated at 141.36 g and an almond content of 40.70%, have better characteristics compared to those collected in the city of Maroua, with average values evaluated at 128.00 g and 36.05%, respectively. Almonds have an average lipid content of 53.98 and 56.75% for the Maroua and Zidim samples, respectively. This study also reveals that neem oil, by its physicochemical characteristics, has a satisfactory quality for a valorization in the production of biodiesel. However, its relatively high free fatty acid content is a major drawback, which leads to a low yield of biodiesel, evaluated on average at 89.02%, and requires a desacidification operation to improve this yield. The analysis of biodiesel indicates physicochemical characteristics close and comparable to those of petrodiesel, particularly in terms of calorific value, density, kinematic viscosity, acid value, evaluated at 41.00 MJ/kg, 0.803, 4.42 cSt, and 0.130 mg/g, respectively
    • 

    corecore