56 research outputs found

    Exact solution of the anisotropic special transition in the O(n) model in 2D

    Get PDF
    The effect of surface exchange anisotropies is known to play a important role in magnetic critical and multicritical behavior at surfaces. We give an exact analysis of this problem in d=2 for the O(n) model by using Coulomb gas, conformal invariance and integrability techniques. We obtain the full set of critical exponents at the anisotropic special transition--where the symmetry on the boundary is broken down to O(n_1)xO(n-n_1)--as a function of n_1. We also obtain the full phase diagram and crossover exponents. Crucial in this analysis is a new solution of the boundary Yang-Baxter equations for loop models. The appearance of the generalization of Schramm-Loewner Evolution SLE_{\kappa,\rho} is also discussed.Comment: 4 pages, 2 figure

    Exact and Scaling Form of the Bipartite Fidelity of the Infinite XXZ Chain

    Full text link
    We find an exact expression for the bipartite fidelity f=|'|^2, where |vac> is the vacuum eigenstate of an infinite-size antiferromagnetic XXZ chain and |vac>' is the vacuum eigenstate of an infinite-size XXZ chain which is split in two. We consider the quantity -ln(f) which has been put forward as a measure of quantum entanglement, and show that the large correlation length xi behaviour is consistent with a general conjecture -ln(f) ~ c/8 ln(xi), where c is the central charge of the UV conformal field theory (with c=1 for the XXZ chain). This behaviour is a natural extension of the existing conformal field theory prediction of -ln(f) ~ c/8 ln(L) for a length L bipartite system with 0<< L <<xi.Comment: 6 page

    Boundary operators in the O(n) and RSOS matrix models

    Get PDF
    We study the new boundary condition of the O(n) model proposed by Jacobsen and Saleur using the matrix model. The spectrum of boundary operators and their conformal weights are obtained by solving the loop equations. Using the diagrammatic expansion of the matrix model as well as the loop equations, we make an explicit correspondence between the new boundary condition of the O(n) model and the "alternating height" boundary conditions in RSOS model.Comment: 29 pages, 4 figures; version to appear in JHE

    Entanglement in gapless resonating valence bond states

    Full text link
    We study resonating-valence-bond (RVB) states on the square lattice of spins and of dimers, as well as SU(N)-invariant states that interpolate between the two. These states are ground states of gapless models, although the SU(2)-invariant spin RVB state is also believed to be a gapped liquid in its spinful sector. We show that the gapless behavior in spin and dimer RVB states is qualitatively similar by studying the R\'enyi entropy for splitting a torus into two cylinders, We compute this exactly for dimers, showing it behaves similarly to the familiar one-dimensional log term, although not identically. We extend the exact computation to an effective theory believed to interpolate among these states. By numerical calculations for the SU(2) RVB state and its SU(N)-invariant generalizations, we provide further support for this belief. We also show how the entanglement entropy behaves qualitatively differently for different values of the R\'enyi index nn, with large values of nn proving a more sensitive probe here, by virtue of exhibiting a striking even/odd effect.Comment: 44 pages, 14 figures, published versio

    Boundary conformal field theories and loop models

    Full text link
    We propose a systematic method to extract conformal loop models for rational conformal field theories (CFT). Method is based on defining an ADE model for boundary primary operators by using the fusion matrices of these operators as adjacency matrices. These loop models respect the conformal boundary conditions. We discuss the loop models that can be extracted by this method for minimal CFTs and then we will give dilute O(n) loop models on the square lattice as examples for these loop models. We give also some proposals for WZW SU(2) models.Comment: 23 Pages, major changes! title change

    Nested algebraic Bethe ansatz for open GL(N) spin chains with projected K-matrices

    Full text link
    We consider an open spin chain model with GL(N) bulk symmetry that is broken to GL(M) x GL(N-M) by the boundary, which is a generalization of a model arising in string/gauge theory. We prove the integrability of this model by constructing the corresponding commuting transfer matrix. This construction uses operator-valued "projected" K-matrices. We solve this model for general values of N and M using the nested algebraic Bethe ansatz approach, despite the fact that the K-matrices are not diagonal. The key to obtaining this solution is an identity based on a certain factorization property of the reduced K-matrices into products of R-matrices. Numerical evidence suggests that the solution is complete.Comment: 27 pages; v2: minor change; v3: references adde

    Hierarchical structure in the orbital entanglement spectrum in Fractional Quantum Hall systems

    Full text link
    We investigate the non-universal part of the orbital entanglement spectrum (OES) of the nu = 1/3 fractional quantum Hall effect (FQH) ground-state with Coulomb interactions. The non-universal part of the spectrum is the part that is missing in the Laughlin model state OES whose level counting is completely determined by its topological order. We find that the OES levels of the Coulomb interaction ground-state are organized in a hierarchical structure that mimic the excitation-energy structure of the model pseudopotential Hamiltonian which has a Laughlin ground state. These structures can be accurately modeled using Jain's "composite fermion" quasihole-quasiparticle excitation wavefunctions. To emphasize the connection between the entanglement spectrum and the energy spectrum, we also consider the thermodynamical OES of the model pseudopotential Hamiltonian at finite temperature. The observed good match between the thermodynamical OES and the Coulomb OES suggests a relation between the entanglement gap and the true energy gap.Comment: 16 pages, 19 figure

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Glutathione Provides a Source of Cysteine Essential for Intracellular Multiplication of Francisella tularensis

    Get PDF
    Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation
    corecore