6 research outputs found

    Helicity inversion in spherical convection as a means for equatorward dynamo wave propagation

    Get PDF
    We discuss here a purely hydrodynamical mechanism to invert the sign of the kinetic helicity, which plays a key role in determining the direction of propagation of cyclical magnetism in most models of dynamo action by rotating convection. Such propagation provides a prominent, and puzzling constraint on dynamo models. In the Sun, active regions emerge first at mid-latitudes, then appear nearer the equator over the course of a cycle, but most previous global-scale dynamo simulations have exhibited poleward propagation (if they were cyclical at all). Here, we highlight some simulations in which the direction of propagation of dynamo waves is altered primarily by an inversion of the kinetic helicity throughout much of the interior, rather than by changes in the differential rotation. This tends to occur in cases with a low Prandtl number and internal heating, in regions where the local density gradient is relatively small. We analyse how this inversion arises, and contrast it to the case of convection that is either highly columnar (i.e., rapidly rotating) or locally very stratified; in both of those situations, the typical profile of kinetic helicity (negative throughout most of the northern hemisphere) instead prevails.ERCSTFCBISUniversity of Exete

    A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field

    No full text
    The Juno spacecraft, which is in a polar orbit around Jupiter, is providing direct measurements of the planet’s magnetic field close to its surface. A recent analysis of observations of Jupiter’s magnetic field from eight (of the first nine) Juno orbits has provided a spherical-harmonic reference model (JRM09) of Jupiter’s magnetic field outside the planet. This model is of particular interest for understanding processes in Jupiter’s magnetosphere, but to study the field within the planet and thus the dynamo mechanism that is responsible for generating Jupiter’s main magnetic field, alternative models are preferred. Here we report maps of the magnetic field at a range of depths within Jupiter. We find that Jupiter’s magnetic field is different from all other known planetary magnetic fields. Within Jupiter, most of the flux emerges from the dynamo region in a narrow band in the northern hemisphere, some of which returns through an intense, isolated flux patch near the equator. Elsewhere, the field is much weaker. The non-dipolar part of the field is confined almost entirely to the northern hemisphere, so there the field is strongly non-dipolar and in the southern hemisphere it is predominantly dipolar. We suggest that Jupiter’s dynamo, unlike Earth’s, does not operate in a thick, homogeneous shell, and we propose that this unexpected field morphology arises from radial variations, possibly including layering, in density or electrical conductivity, or both

    Dynamo models of the solar cycle

    No full text

    Magnetism, dynamo action and the solar-stellar connection

    No full text
    corecore