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ABSTRACT
We discuss here a purely hydrodynamical mechanism to invert the sign of the kinetic helicity,
which plays a key role in determining the direction of propagation of cyclical magnetism in
most models of dynamo action by rotating convection. Such propagation provides a prominent,
and puzzling constraint on dynamo models. In the Sun, active regions emerge first at mid-
latitudes, then appear nearer the equator over the course of a cycle, but most previous global-
scale dynamo simulations have exhibited poleward propagation (if they were cyclical at all).
Here, we highlight some simulations in which the direction of propagation of dynamo waves is
altered primarily by an inversion of the kinetic helicity throughout much of the interior, rather
than by changes in the differential rotation. This tends to occur in cases with a low Prandtl
number and internal heating, in regions where the local density gradient is relatively small.
We analyse how this inversion arises, and contrast it to the case of convection that is either
highly columnar (i.e. rapidly rotating) or locally very stratified; in both of those situations,
the typical profile of kinetic helicity (negative throughout most of the Northern hemisphere)
instead prevails.

Key words: convection – dynamo – hydrodynamics – turbulence – Sun: general – stars:
general.

1 IN T RO D U C T I O N

The systematic equatorward migration of sunspot emergence lat-
itudes constitutes one of the most enduring puzzles of solar
physics. Spots appear first at mid-latitudes, then progressively
nearer the equator over the course of a roughly 11-yr cycle (e.g.
Carrington 1858; Maunder 1904; reviews in Ossendrijver 2003,
Hathaway & Rightmire 2010), constituting the famous ‘butterfly
diagram’. There is now widespread agreement that the surface
magnetism ultimately arises from the action of a dynamo within
the Sun’s electrically conducting convection zone, but a detailed
explanation for the equatorward propagation has remained elusive
(see e.g. Moffatt 1978). In many models of the global solar dynamo,
this propagation is taken to reflect underlying wave-like behaviour
in the generation of sub-surface magnetism (see e.g. review in Char-
bonneau 2010; Priest 2014).

In the classic model developed by Parker (1955) and explored by
many other authors since (e.g. Yoshimura 1975; Stix 1976; Gilman
1983), the wave-like behaviour arises from the combination of he-
lical turbulence and differential rotation, described in mean-field
theory by the α-effect and �-effect, respectively (e.g. Steenbeck,

�E-mail: lduarte@astro.ex.ac.uk

Krause & Rädler 1966; review in Brandenburg & Subramanian
2005). The former encapsulates the production of poloidal mag-
netic field from toroidal (or vice versa) by convective eddies that
rise and twist, while the latter describes the generation of toroidal
field by linear winding of a poloidal field by differential rotation.
In an α� dynamo, the sign of newly generated toroidal field is de-
termined by the sense of the differential rotation and by the sign
of the pre-existing poloidal field. The latter in turn depends on the
properties of the convective flows. The direction of propagation
of the dynamo wave is then determined by the locations where
toroidal field, generated by the differential rotation from stretching
of poloidal field loops, cancels or enhances the pre-existing toroidal
field: if the newly generated field tends preferentially to cancel pre-
existing field near the equator and reinforce it at higher latitudes, the
migration of the field will be polewards. This is encapsulated by the
well-known Parker–Yoshimura sign rule that dynamo waves in such
models travel in a direction given by s = α∇� × eφ (Yoshimura
1975; Stix 1976).

The sign of the α-effect, which partly determines the direction
of propagation of the dynamo wave, is fundamentally related to
the lack of reflectional symmetry in the flow: α changes sign un-
der transformations from right-handed to left-handed coordinate
systems, and vanishes if the velocity field is statistically invariant
under such parity transformations (see e.g. Moffatt 1978). In many
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Helicity inversion mechanism 1709

variants of mean field theory, assuming certain simplifying features
about the velocity field, α can in turn be related to the kinetic helic-
ity of the flow, u · ω = u · (∇ × u) (with ω the vorticity), often in
addition to other terms involving the current helicity (e.g. Pouquet,
Frisch & Leorat 1976; Brandenburg & Subramanian 2005). The
sign and spatial variation of the kinetic helicity are thus crucial for
determining the direction of field propagation.

In the past few decades, a wide variety of published non-linear
dynamo simulations in spherical geometries have been shown to
exhibit cyclical behaviour (e.g. Gilman 1983; Ghizaru, Charbon-
neau & Smolarkiewicz 2010, in the context of stellar astrophysics,
or Goudard & Dormy 2008; Schrinner, Petitdemange & Dormy
2011; Simitev & Busse 2012; Gastine, Duarte & Wicht; 2012 in
the planetary context). However, to the extent that these simulations
have exhibited systematic latitudinal propagation, this has generally
been polewards (see, e.g. discussion in Brun, Derosa & Hoeksema
2013), in agreement with the Parker–Yoshimura rule (given the real-
ized kinetic helicity and differential rotation) but in conflict with the
observed solar butterfly diagram. More recently, a few groups have
published examples of convective dynamos whose propagation is
equatorwards: e.g. Käpylä, Mantere & Brandenburg (2012), Käpylä
et al. (2013), Augustson et al. (2013), Warnecke et al. (2014). In
each of these cases, the equatorward migration has been attributed
largely to features in the differential rotation: e.g. to regions where
the radial � gradient is negative (Käpylä et al. 2012; Warnecke
et al. 2014), or to non-linear feedbacks on the shear (Augustson
et al. 2015). The kinetic helicity profile in these simulations, and
with it the purported α-effect, appears to be largely as described in
Section 2.1 below, and as realized in many previous simulations: it is
negative in the Northern hemisphere, leading to a positive α-effect.

In this paper, we explore the circumstances under which the ki-
netic helicity, and with it the generation of poloidal magnetic fields,
actually has this spatial distribution. In Section 2 we review the pro-
cesses that lead to this helicity distribution, and outline a scenario
in which it could instead have the opposite sign throughout much
of the spherical domain. In Section 3, we carry out non-linear sim-
ulations of anelastic convective dynamos in global spherical shells,
and show that these can indeed exhibit such ‘reversed’ kinetic he-
licity profiles in certain regimes. We demonstrate that simulations
exhibiting this reversal also show systematic equatorward propaga-
tion of dynamo waves, without any accompanying changes in the
differential rotation. We analyse the mechanisms behind the kinetic
helicity reversal more thoroughly in Section 4, and close in Sec-
tion 5 with a summary of our work and a discussion of its possible
relevance to the Sun, other stars, and planets.

2 R E G I M E S O F K I N E T I C H E L I C I T Y

2.1 Classical helicity configuration in global dynamo
simulations

The kinetic helicity H, calculated as

H = u · ω = u · (∇ × u), (1)

arises from the twisting and writhing of convective flows as they rise
or fall. It is instructive to consider two regimes of convection that
have been the subject of particularly wide study, which we will call
‘columnar’ and ‘plume-like’. The former has been widely studied in
the planetary context (see, for example Busse 1970; Busse & Cuong
1977; Olson, Christensen & Glatzmaier 1999; Busse 2002; Aubert
2005; Aubert, Aurnou & Wicht 2008) and found to dominate in
rapidly rotating systems at lower Rossby numbers. In Boussinesq

Figure 1. Diagram of vorticity generation in columnar convection, in a
rotating spherical shell.

models, the transition to such behaviour has been discussed by
Soderlund, King & Aurnou (2012) and we will address this matter
in Section 5.2.

Columnar convection consists of dominating nearly 2D (quasi-
geostrophic) circular motions (i.e. independent of the z cylindrical
coordinate, defined by the rotation axis) with a secondary axial flow
induced mainly by the boundaries along the columns for a Boussi-
nesq fluid (Busse, Grote & Tilgner 1998; Olson et al. 1999). The
2D vortical motion arises from diverging up flow encountering the
top and bottom boundaries, generating clockwise vortical motion.
Since the resulting radial vorticity ωr from the diverging up flow is
negative in the North hemisphere and positive in the Southern (as
a result of the Coriolis force acting on it), the z component of the
resulting vorticity ωz is negative in both hemispheres. The flow will
then sink towards the equatorial plane and converge to start rising
again, generating now counter-clockwise motion (positive ωz, see
Olson et al. 1999, and also Fig. 1). While the divergence of the
flow occurs mainly near the boundaries, convergence can happen
anywhere in the bulk and not exclusively at the equator (Fig. 1). Ac-
cording to the Taylor–Proudman constraint (Proudman 1916; Taylor
1922), the local axes of vorticity tend to align with the rotation axis
z, shaping columns of alternating vorticity sign. As illustrated in
Fig. 2, uz is positive in the Northern hemisphere and negative in the
southern along columns with positive ωz and vice versa. This means
that in columnar convection, the kinetic helicity H is dominated by
the cylindrical component in z. Thus Hz will always be negative in
the Northern hemisphere (uz and ωz have opposite sign) and pos-
itive in the southern (uz and ωz have the same sign). This helicity
organization is helpful to obtain a large scale dipole field (e.g Olson
et al. 1999). Note that columnar convection is also present in some
plane-layer models (Childress & Soward 1972 and an example of
application in numerical models, Stellmach & Hansen 2004), thus
it does not necessarily depend on the spherical geometry.

A second regime, in which stratification and buoyancy instead
play central roles, also often results in a similar kinetic helicity pro-
file. In this ‘plume-like’ regime, more akin to the classic Rayleigh–
Bnard convection problem, convection consists of rising and sink-
ing flow between the inner and outer boundaries, predominantly
along the radial direction. We generally expect that this type of
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Figure 2. Diagram of columnar convection inside a rotating spherical shell.

convection will replace columnar convection in a rotating system
when the effect of rotation is weak compared to buoyancy.

This regime is easily attained near the surface of strongly strat-
ified models of stellar and planetary convection (see, e.g. Miesch
et al. 2008; Glatzmaier, Evonuk & Rogers 2009; Gastine, Wicht &
Aurnou 2013; review in Miesch & Toomre 2009), where the den-
sity gradient is much steeper leading to comparatively larger Rossby
numbers (ratio between inertia and Coriolis force, e.g. Browning
2008; Gastine & Wicht 2012; Gastine et al. 2013). Furthermore,
a higher value of Rossby number may also intensify helicity (see
Section 4.1 below). According to the anelastic continuity equation,

0 = ∇ · (ρu) = ρ∇ · u︸ ︷︷ ︸
incompressible term

+ u · ∇ρ︸ ︷︷ ︸
compressible term

, (2)

when the density gradient is dominant (second term on the right-
hand side), a parcel rising along r expands due to the rapidly de-
creasing density towards the surface (Fig. 4). The Coriolis force
acts on the expanding fluid to generate anticyclonic fluid motion
(negative ωr in the Northern hemisphere and positive in the south-
ern, see Glatzmaier 1985). In addition, the rising velocity decreases
as a fluid parcel slows down when approaching the outer boundary,
which may also decrease the effect of the incompressible term of the
continuity equation (first term on the right-hand side). For the same
reason, sinking flow contracts generating cyclones (positive ωr in
the Northern hemisphere and negative in the southern). Both effects
of the rising/sinking flow naturally correlate as negative helicity,
so plume-like convection near the surface typically gives a hemi-
spherical North/South helicity pattern similar to that of columnar
convection. Both types of convection often co-exist and reinforce
each other in stratified models.

2.2 ‘Inverted’ helicity configuration

In the previous section, we described the most commonly observed
case of helicity distribution in numerical dynamo models in rotat-
ing spherical shells. In the presence of milder density stratification
(Nρ � 4) and rapid rotation, convection is often dominated by
columnar convection. If on the other hand buoyancy dominates and
the medium is highly stratified, plume-like convection (consisting
of expanding upflows and contracting downflows) often prevails.
Both lead to a kinetic helicity profile that is predominantly neg-
ative in the Northern hemisphere. But what happens under other
circumstances?

In the presence of a weak density contrast, roughly Nρ � 1,
a rising fluid parcel will tend to contract since its velocity is in-
creasing as it starts from the bottom with ur = 0 (impenetrable
boundaries). More generally, this may be true even far from the
boundaries if ∂ur/∂r > 0. This is easily understood from the equa-
tion of mass conservation (equation 2) when assuming that ∇ρ is
small. Such small density contrasts typically exist in stratified mod-
els in the inner 80–90 per cent of the radius (see Section 3 below,
particularly Fig. 4). Consequently, the continuity equation becomes
approximately the Boussinesq continuity equation of ∇ · u = 0 in
the deeper part of the shell. Fig. 3 illustrates schematically this be-
haviour below the dashed line which is a representation of the inner
part of the radius of a spherical shell. In this region, the density
gradient is relatively smaller than above the dashed line, which rep-
resents the outer few per cent where typically most of the density
gradient is located.

In the region of small density gradient below the dashed line of
Fig. 3, the Coriolis force acts on the rising+contracting fluid generat-
ing positive radial vorticity ωr in the Northern hemisphere and neg-
ative in the southern (cyclones). In the same region in the same way,
sinking flow expands as it slows down towards the bottom bound-
ary, generating anticyclones. In both cases of rising+contracting
and sinking+expanding flows, the resulting sign of helicity is posi-
tive in the Northern hemisphere and negative in the southern. This
behaviour is opposite to the outer layer (described in the previ-
ous section) and it seems only pertinent when columnar convection
becomes minimal in the bulk.

In this schematic picture, explored in more detail in the following
sections, the inversion of kinetic helicity is a purely hydrodynamical
effect, independent of the magnetic field, though it will ultimately be
important to determine the direction of the poloidal field generated
by the α-effect and consequently the sign of the generated toroidal

Figure 3. 2D portion of a spherical latitudinal section represented in a
planar view. The dashed line separates the inner part of the density gradient
where it is mild and the outer part where the gradient becomes steeper (see
Fig. 4). Note that this is merely a sketch, thus is it not done to scale.
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Helicity inversion mechanism 1711

field, which explains the direction of propagation of a dynamo wave
in the Parker model.

It is also useful to distinguish between the possibility of deep
layers where the kinetic helicity is ‘reversed’ (i.e. positive in the
Northern hemisphere), as explored here, from well-known boundary
effects that would tend to lead to the same profile within a narrow
layer close to the bottom of the convection zone. It has long been
anticipated that such reversals of kinetic helicity would arise at the
base of the solar convection zone, for example, where convective
downflows begin to be buoyantly braked and spread (e.g. Brummell,
Cline & Cattaneo 2002). But in simple parametrizations of the solar
dynamo, the layer where this reversal is achieved is typically taken to
be confined to a region near the bottom of the convective envelope
or below its base (e.g. Charbonneau 2010). The convergence of
flows to feed plumes that are beginning to rise buoyantly from a
bottom thermal boundary layer is also well known (Julien et al.
1996; Nishikawa & Kusano 2002; Dubé & Charbonneau 2013;
Guervilly et al. 2014) and is likewise somewhat distinct from the
distributed helicity profiles described here, though the same basic
physical mechanisms underlie all these. This will be demonstrated
in the following sections.

3 MO D EL

3.1 Numerical model

For this work, we used the MagIC1 code to solve an anelastic
version of the MHD equations, following Gilman & Glatzmaier
(1981), Braginsky & Roberts (1995) and Lantz & Fan (1999), in
a rotating spherical shell. This code implements a dimensionless
formulation, where the length scale is the shell thickness d, the time
is non-dimensionalized by the viscous time τ ν = d2/ν (where ν is
the kinematic viscosity) and the temperature, gravity and density by
their values at the outer boundary, respectively To, go and ρo. Lastly,
the magnetic field unit is given by

√
�μλiρo, where � is the rotation

rate, μ the magnetic permeability and λi the magnetic diffusivity at
the bottom boundary of the domain, ri. The dimensionless equations
are

E

(
∂u
∂t

+ u · ∇u

)
= −∇ p

ρ̃
− 2ez × u + Ra E

Pr

r

ro

s er

+ 1

Pmi ρ̃
(∇ × B) × B + E

ρ̃
∇ · S, (3)

∂B
∂t

= ∇ × (u × B) − 1

Pmi

∇ × (λ̃∇ × B), (4)

ρ̃ T̃

(
∂s

∂t
+ u · ∇s

)
= 1

Pr
∇ · (ρ̃T̃ ∇s) + ερ̃

+ Pr Di

Ra

[
Qν + 1

Pm2
i E

Qj

]
. (5)

∇ · (ρ̃u) = 0, (6)

∇ · B = 0. (7)

1 https://github.com/magic-sph/magic

Figure 4. Background density profiles used in this work. The red dashed
line corresponds to Jupiter’s density profile (French et al. 2012), where
Nρ ∼ 4.9 in the inner 99 per cent of the shell radius and fitted by a polytrope
of index n ∼ 2.2. The cyan dot–dashed line shows the background density
profile of a polytrope with Nρ = 5 and n = 2. The blue solid line shows the
background density profile of a polytrope with Nρ = 3 and n = 2.

where u, B and s are the velocity, magnetic field and entropy fields,
respectively, η is the aspect ratio given by η = ri/ro = 0.2 and the
traceless rate-of-strain tensor S for homogeneous ν is

S = 2ρ̃

[
eij − 1

3
δij∇ · u

]
, eij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (8)

and δij is the identity matrix. The viscous and ohmic heating con-
tributions are

Qν = 2ρ̃

[
eij eji − 1

3
(∇ · u)2

]
(9)

and

Qj = λ̃(∇ × B)2. (10)

The background reference state is defined by the temperature
gradient dT̃ /dr = −Di g(r) and the background density is derived
as ρ̃(r) = T̃ n, where the tilde corresponds to the background refer-
ence state and n is the polytropic index. The dissipation number Di
is expressed as

Di = go d

cp To

= 2
eNρ/n − 1

1 + η
, (11)

where Nρ = ln (ri/ro) is the number of density scaleheights and ri

and ro are the radii of the inner and outer boundaries, respectively.
In Fig. 4, the solid blue line corresponds to Nρ = 3 and n = 2 and
the cyan dot–dashed line to Nρ = 5 and n = 2. The red dashed line
corresponds to a polynomial fit of Jupiter’s interior model (French
et al. 2012), where the corresponding T̃ (r) was obtained from the
best corresponding n to the data for the background temperature
from the same model. The result is Nρ ≈ 4.9 and n ≈ 2.2.

Finally, the control parameters in equations (3)–(7) correspond to
ratios between pairs of terms of the Navier–Stokes equation, namely
the Ekman number (viscous over Coriolis force), the Rayleigh num-
ber (measure of the convective driving of the system) and the fluid
and magnetic Prandtl numbers,

E = ν

�d2
, (12)

Pr = ν

κ
, (13)
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Pmi = ν

λi

, (14)

where κ , ν and λ are the thermal, viscous and magnetic diffusivi-
ties, respectively. In our models, we fixed E = 10−4 and we used
Pr = 0.1/1.0 and Pmi = 0.0–20.0 for the ratios between diffusivi-
ties. The Rayleigh number is either entropy-based or flux-based as
follows

Ra = god
3

νκ
Sscale, (15)

where Sscale = �s/cp if the boundary conditions of the energy
equation are fixed entropy and Sscale = qod/(ρocpκ) for the models
where the boundaries are assumed fixed flux. The quantities qo and
cp are the specific entropy flux at the outer boundary and the specific
heat capacity at constant pressure, respectively.

Even though the results discussed in this paper were first found in
our Jupiter models with variable magnetic diffusivity (as reported
by Jones 2014; Dietrich & Jones 2014), we simplified some of these
models by carrying out a small number of hydrodynamic and mag-
netic simulations with constant transport properties along radius, to
illustrate our conclusions. The variable conductivity profile used in
the Jupiter models is described in Gastine et al. (2014).

3.2 Numerical method

The MagIC code uses a pseudo-spectral method to solve the MHD
equations described above. Spherical harmonics are used in the hor-
izontal direction (θ , φ) up to degree and order �max and Chebyshev
polynomials in the radial direction up to degree Nr (see Wicht 2002,
for a more detailed description). The equations are solved in the
commonly used poloidal/toroidal decomposition of the divergence-
free fields ρu and B (equations 6 and 7) as

ρu = ∇ × ∇ × v er + ∇ × w er

B = ∇ × ∇ × b er + ∇ × t er , (16)

where v and b are the poloidal potentials of ρu and B, respectively,
while w and t are the toroidal counterparts. The radial unit vector is
represented by er .

The boundary conditions applied in our simulations are the same
for the velocity and magnetic fields. Following previous work which
had the purpose of modelling the gas giants (Gastine & Wicht
2012; Gastine et al. 2012; Duarte, Gastine & Wicht 2013), the
inner boundary is assumed no-slip and the inner core is modelled
as an electrical conductor. Top boundary is considered free-slip and
the magnetic field is there matched to a potential field. The entropy
boundary conditions and heating modes vary in our models. Several
of our cases assume simple bottom heating, i.e. the entropy contrast
between the bottom and top boundaries �s is fixed and there is no
internal heating in the system, thus the heating entering the system
through the bottom boundary exits through the top. The other two
setups for the energy equation considered here account for internal
heat sources: in one case with fixed entropy boundaries and in the
other with fixed flux boundary conditions.

3.3 Diagnostic parameters

In the following sections we will describe the flow by often referring
to several dimensionless diagnostic parameters to be consistent with
the formulation outlined in the previous sections.

The amplitude of the flow contributions is measured in terms of
the Rossby numbers Ro. The value of Ro is calculated as

Ro = u
� d

, with u =
√

3

r3
o − r3

i

∫ ro

ri

〈u2〉 r2 dr , (17)

where u is the rms volume-averaged flow velocity and the triangular
brackets denote the angular average

〈f 〉 = 1

4π

∫ π

0

∫ 2π

0
f (r, θ, φ) sin θ dθ dφ. (18)

The local Rossby number has been introduced by Christensen &
Aubert (2006) to quantify the relative importance of the advection
term in the Navier–Stokes equation (equation 3). Here we consider
only the non-axisymmetric part of the flow velocity um 	= 0 (i.e.
velocity excluding the axisymmetric flow component) to calculate
the local convective Rossby number, defined as

Ro� conv =

√
1
V

∫ ro
ri

〈
u2

m 	=0

〉
r2 dr

� �
, (19)

where, � is a typical flow length scale given by

�(r) = π u2(r)∑
l

l u2
l (r)

. (20)

Here, ul is the flow contribution of spherical harmonic degree l.
The geometry of the surface field is characterized by the dipolar-

ity

fdip =

〈(
Bm=0

l=1

)2
〉

〈 ∑
l,m≤lmax

(
Bm

l

)2
〉 , (21)

which measures the relative energy in the axial dipole contribution
at the outer boundary ro.

Finally, to describe the behaviour of the various components
of the flow, we used correlations between pairs of variables. A
correlation between two sets of data A and B in the form of 3D
matrices corresponding to the three spherical coordinates r, θ , φ is
calculated at each radial level as

corr(A, B)θ,φ(r) =∑
θ,φ

[
Aθ,φ(r) − 〈Aθ,φ(r)〉] [

Bθ,φ(r) − 〈Bθ,φ(r)〉]√∑
θ,φ

[
Aθ,φ(r) − 〈Aθ,φ(r)〉]2 ∑

θ,φ

[
Bθ,φ(r) − 〈Bθ,φ(r)〉]2

. (22)

The parameters described in this section are listed along control
parameters in Table 1, averaged over at least 0.1 viscous time. The
values of the Rayleigh number necessary for the onset of convec-
tion as defined by Jones, Kuzanyan & Mitchell (2009) (i.e. where all
other dimensionless control parameters are fixed), were obtained for
cases without internal heating. These values were used to obtain the
supercriticality values listed in Table 1 at constant Ekman number.
In the same table, simulations without internal heating correspond to
ε = 0 (see equation 5) and ε 	= 0 if internal heating is present. Con-
cerning the entropy boundary conditions corresponding to columns
sBC, i (bottom) and sBC, o (top), values 0 and 1 indicate fixed entropy
and flux, respectively.
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4 K INETIC H ELICITY REALIZED
IN NON-LINEAR SIMULATIONS

4.1 Numerical hydro/dynamo models

Fig. 5 illustrates the two helicity configurations described in Sec-
tions 2.1 and 2.2 for global hydrodynamical and dynamo simu-
lations in a rotating spherical shell, for two different supercriti-
calities. Contour plots of azimuthally averaged kinetic helicity are
shown here for snapshots, since these helicity patterns are not time-
dependent in our models. The top panels show the usual one-layer
negative(North)/positive(South) helicity configuration for the com-
bination of columnar convection and plume-like convection from
Section 2.1. The bottom plots show the two-layer behaviour de-
scribed in Section 2.2 and illustrated in Fig. 3. In each row, the
supercriticality of the models increases from left to right, hence
the later onset of convection inside the tangent cylinder TC (cylin-
der tangent to the inner core boundary around the rotation axis)
on the left-hand side panels. As mentioned in the Introduction, the
different sign of helicity (e.g. top and bottom rows of Fig. 5) is ob-
tained for models which retain similar differential rotation profiles,
as shown in Fig. 6. As evident in Fig. 6, the differential rotation is
solar-like in the sense of having a faster equator. Model 4 does how-
ever exhibit some non-geostrophic flow that breaks the equatorial
symmetry (Gastine et al. 2012). This figure also shows an additional
model (case 5 of Table 1) because we refer to that simulation later
in Section 4.2.

Fig. 7 shows radial velocity contour plots for three cases dis-
played in Fig. 5, namely the top row and the right-hand panel of the
bottom row. Fig. 8 displays models 4 and 11 in orthographic projec-
tion to illustrate the latitudinal/longitudinal distribution of the flow
features at the two depths described in Sections 2.1 and 2.2. The left-
most panel of Fig. 7 (and top-left panel of 5) is distinctly dominated
by columnar convection. The middle panel has a stronger density
gradient in the outer part of the shell as Fig. 4 shows, resulting in
a break down of the columns in the outer radius, where convec-
tion becomes dominated by radial features (see fig. 12 of Gastine
et al. 2013). Below this outer layer, convection remains under a
columnar regime, though combined with plume-like convection.
This setup corresponds to the one-layer helicity pattern described
in Section 2.1, where both types of convection co-exist in strongly
stratified models. The right-hand panel corresponds to the two-layer
helicity pattern described in Section 2.2, where convection is seem-
ingly not columnar any more. In this case, the density gradient
used was the interior model for Jupiter in Fig. 4, which may help
achieving this configuration since, even though the density contrast
is also around 5 density scaleheights, it now concentrates most of
the gradient in the outer 10–20 per cent of the radius of the shell.
However, this is not the only difference, as we will discuss next.

Perhaps more significantly, the cases in Figs 5–8 that show ‘in-
verted’ helicity (models 8 and 11) also differ from the other cases
displayed here in these figures by adopting a lower value of Pr and
a different mode of heating. While Pr = 1.0 in the top row panels
of Fig. 5, as in most of our previous work (for example, Gastine &
Wicht 2012; Gastine et al. 2012; Yadav et al. 2013; Duarte et al.
2013), the cases in the bottom row have a lower value of Pr = 0.1.
The effect of lowering the Prandtl number has been thoroughly
studied by Simitev & Busse (2005); Sreenivasan & Jones (2006),
where their main conclusion was the significant increase of the role
of inertia when decreasing Pr by one order of magnitude or more
from unity. When inertia enters the force balance at a significant
degree, the columnar convection constraint weakens in the bulk, as

Figure 5. Azimuthally averaged contour plots of kinetic helicity. The top
row displays the helicity pattern described in Section 2.1 for models 1 (a)
and 4 (b) of Table 1. The bottom row shows two examples of the regime
described in Section 2.2 for cases 8 (c) and 11 (d) of the same table.

discussed by Christensen & Aubert (2006). The change of heating
mode in conjunction with fixed flux boundaries is also crucial. An
internal heating source has been shown to spread convection in the
domain, thus also weakening convection in the bulk as it tends to de-
tach the deeper convective motions from the inner boundary (Hori,
Wicht & Christensen 2010). With fixed entropy boundary condi-
tions, on the other hand, changes in the internal heating mode did
not appear to change the outcome in our simulations (see however
Jones 2014; Dietrich & Jones 2014, for a possible counter-example).

Lowering the value of Pr appears to be the most important factor
in changing the helicity pattern due to its relation to the amount of
inertia in the system, with a tendency to promote plume-like con-
vection. When applying only a different heating mode or a different
density profile or both, we saw very little difference in the final re-
sults of our models as the one-layer helicity configuration remains
dominant. However, lowering Pr alone is not sufficient either. In
Fig. 9, we show two cases with the same lower Prandtl number
Pr = 0.1, though convection in the left-hand panel is driven by
bottom heating and on right by internal heating proportional to the
background density profile (equation 5). The left-hand panel shows
that indeed the inversion to attain the helicity regime of Section 2.2 is
not complete unless we combine the lower Pr with internal heating.
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Helicity inversion mechanism 1715

Figure 6. Azimuthally averaged contour plots of zonal velocity uφ . The
top row displays model 4 from Table 1, the middle row model 5 and the
bottom row model 11. The two top rows are examples of the helicity pattern
described in Section 2.1 and the bottom row of Section 2.2. The velocity is
given in units of Reynolds number, Ro/E (see equation 17).

Figure 7. Contour plots of slices of radial velocity for three of the cases
shown in Fig. 5, namely cases 1, 4 and 11 of Table 1 from left to right,
corresponding to panels a, b and c, respectively. The velocity is given in
units of Reynolds number, Ro/E (see equation 17).

In conclusion, the combination of the three effects (high Nρ , low
Pr and internal heating) is important to achieve the required degree
of non-columnar/plume-like convection in the bulk of the shell.
The requirement of high Nρ is harder to constrain and appears to
be inconsistent with the requirement for negligible density contrast
in the interior. This apparent contradiction is because the higher
the overall density contrast, the closer we get to a negligible den-
sity gradient in the bulk. Even though this does not eliminate the
possibility of Section 2.2 also occurring in a weakly stratified or
even Boussinesq model, cases 31 and 32 in Table 1 show a helicity
pattern very similar to the plane layer configuration, with a symme-
try about half of the height (Julien et al. 1996), or half the radius
in the case of a spherical shell. How exactly this symmetry about
the mid-plane is broken by the combination of density stratification
and internal heating, and whether the ‘inverted’ helicity layers stud-
ied here require both these elements or are conceptually unrelated,
requires further study.

Käpylä et al. (2013) has reported a relation between the rotation
rate and the degree of stratification for the onset of oscillatory
solutions, which we did not explore here: they find that at higher
Nρ , lower Ro is necessary to find oscillatory solutions. They also
argued that equatorward wave solutions occur only at larger Nρ ,
whereas poleward propagation is found instead at milder density
contrasts.

4.2 Dynamo waves

In Fig. 10 we show a few examples of butterfly diagrams constructed
from our models, to illustrate the consequence of the different he-
licity patterns described above, in rough accordance with the Parker
model. The top-left panel shows a previous simulation from our
previous Jupiter models which has a poleward-propagating dynamo
wave for comparison (see Gastine et al. 2012; Duarte et al. 2013).
The other three panels exemplify the variety of equatorward prop-
agating waves found in the models described here. In some cases,
the equatorward part is confined to a lower latitudinal band with
weak poleward propagation at high latitudes, likely due to the lack
of convection inside the TC at lower supercriticality (see examples
of Fig. 5). None the less, this higher latitude feature is common
in most models and a similar higher latitude feature has also been
observed in the Sun (Hathaway & Upton 2014).

Fig. 11 shows two butterfly diagrams for the same model. The
toroidal field is shown on the left-hand panel at the same depth
as in Fig. 10 and the poloidal field is shown at the surface in the
right-hand panel. These two panels demonstrate that the wave-like
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Figure 8. Contour plots of radial velocity ur for the two models on the right-hand column of Fig. 5, namely models 4 (panels a and c) and 11 (panels b and d)
of Table 1. Panels a and b correspond to the inner radial level of r = 0.7ro and c and d to r = 0.97ro. The latitude circles and meridians (black dashed lines)
are placed 60◦ apart. The velocity is given in units of Reynolds number, Ro/E (see equation 17).

Figure 9. Azimuthally averaged countour plots of kinetic helicity for two
cases with Pr = 0.1. The heating mode of the model in panel a is bottom
heating (model 15 from Table 1) and on b is internal heating (model 11 from
Table 1).

motion is also observed at the surface of our models, which would
result in a Sun-like butterfly diagram. Following Gilman (1983),
we also plotted here the axisymmetric toroidal components of the
kinetic (dashed line) and magnetic (solid line) energies, normalized
by the total kinetic and magnetic energies, respectively. As Gilman
(1983) reported, it is possible to identify the imprint of the wave in
the kinetic and magnetic energy time series.

A detailed study of dynamo cases is out of the scope of this paper,
since we intended to focus simply on the mechanisms that alter
the kinetic helicity and with it the direction of migration. Aspects
related to the magnetic field will be further analysed in future work.
For some of these cases, the dynamo wave is not stable, eventually
stabilizing in an octupolar solution, which may be related to the use
of variable transport properties from our work on Jupiter models.

5 A NA LY SIS AND INTERPRETATION

5.1 Correlations to describe flow behaviour

According to the idealized scenario described in Section 2.1, colum-
nar convection often dominates in the inner part of the shell, where
the ‘rising/sinking’ component of the flow uz (along a column and
away from the equator) is antisymmetric about the equator but (since
the column rotates in the same direction in both hemispheres) ωz

is symmetric. Converting between cylindrical and spherical coordi-

nate systems,

uz = ur cos θ − uθ sin θ ⇒ ur = us sin θ + uz cos θ, (23)

where s represents here the cylindrical radius, we see that the radial
component of the velocity ur is symmetric over the equator, while
ωr is antisymmetric. The radial quantities are particularly relevant
in strongly stratified models, where convection becomes plume-
like thus the preferred ‘rising/sinking’ direction is along spherical
radius. At each radial level, divergence and convergence of the flow
is represented by the horizontal divergence of the flow (in spherical
coordinates)

∇h · uh = 1

r sin θ

∂

∂θ
(uθ sin θ ) + 1

r sin θ

∂uφ

∂θ
. (24)

A similar divergence can be adapted to columnar convection, by
assuming a horizontal plane defined by the cylindrical coordinates
s, φ at a fixed height z, thus replacing uh = f(θ , φ) by uhz = f(s, φ)
and similarly ∇h by ∇hz.

Fig. 12 shows several correlations between different properties of
the rising/sinking flow that dominate convection, only in the radial
direction for a first analysis. The model of the panels of the left-hand
column represents the helicity setup described in Section 2.1 and the
model of the right-hand column corresponds to the setup described
in Section 2.2. Focusing mainly on the right-hand column, since we
expect convection to be non-columnar here, in the top panel we see
that the rising velocity ur correlates negatively with the horizontal
divergence throughout most of the radius as expected, i.e. as the
flow rises it contracts and when it sinks it diverges, as described in
Section 2.2. The picture naturally inverts in the outer 10 per cent of
the layer, where the density gradient dominates, causing a positive
correlation between the two quantities. The second-row panel on the
right-hand side shows the expected role of the Coriolis force acting
on the diverging/converging flow to generate negative/positive ωr

in the Northern hemisphere (grey line) and positive/negative in the
southern (black line). The third panel correlates directly ur and ωr,
clearly showing that rising/sinking flow in the outer ∼10 per cent of
the shell gives negative/positive vorticity, while the picture inverts
in the bulk. This panel also translates directly into the preferred
sign of kinetic helicity, negative near the surface but positive be-
low ∼90 per cent (Section 2.2 scenario). Finally, the bottom panel
displays the correlation between ur and the acceleration or decel-
eration of the fluid, since in the continuity equation it is dur

dr
that is

ultimately linked to horizontal divergence/convergence (if the com-
pressible term is negligible). This shows that the flow is consistently
speeding up as it rises as well as slowing down when it sinks in most
of the shell, which explains the tendency to contract as it rises.

The left-hand column of Fig. 12 displays a model which has been
shown in the previous section to be mostly dominated by columnar
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Helicity inversion mechanism 1717

Figure 10. Four examples of models from our data base that illustrate the effect of the helicity regime in the direction of propagation of the dynamo wave. The
time evolution of the toroidal component of the magnetic field is shown averaged over longitude. The time is given in viscous time τν . The cases in correspond
to models 5, 17, 9 and 11 of Table 1 in clockwise direction, starting from the top-left panel.

Figure 11. Illustration of the wave at 80 per cent of the radius (left-hand panel) and the resulting signature in the surface field (right-hand panel), for model
18 of Table 1.

convection in the bulk, resulting in the helicity pattern described in
Section 2.1. As a result, the radial correlations displayed in the left-
hand column of Fig. 12 show some inconsistencies and asymmetries
between the two hemispheres, while the right-hand side panels of
the same figure show almost perfect symmetry. This occurs be-
cause in columnar convection, such quantities are better expressed
in terms of the cylindrical z coordinate. Thus Fig. 12 shows two

examples of changes in the flow regime as the rotational constraint
is varied, as also seen in the values of convective local Rossby num-
ber: Ro� conv = 0.276 and Ro� conv = 0.423 for the models on the
left- and right-hand columns, respectively.

Fig. 13 shows the same left-hand column of Fig. 12 and the right-
hand column represents equivalent calculations for the same model
along z, as described in the beginning of this section. There is some
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1718 L. D. V. Duarte et al.

Figure 12. Correlations between several properties of the flow along the radial direction, namely rising/sinking flow ur, horizontal divergence ∇h · uh, radial
vorticity ωr and acceleration/deceleration ∂rur . The left-hand column corresponds to model 4 in Table 1 and the right-hand column to model 11. All correlations
were calculated at each grid point according to equation (22), averaged over the horizontal spherical coordinates θ , φ at each radial level r and over time from
∼100 snapshots distributed over an interval of ∼20 per cent of a viscous time.

asymmetry in both columns, since there is a small superposition of
the two convective regimes, but the right-hand column more clearly
illustrates the behaviour of the flow. In the right top panel, when uz

is positive (away from the equator and towards the upper boundary)
in the Northern hemisphere, the flow will diverge at the top of a
column which is seen by tracking the grey line. The inner part is
an exception though, likely due to either a superposition with the
radial component or to the influence of convection inside the TC
(not explored here) since the correlations shown are averaged over
horizontal spherical coordinates (see caption of Fig. 12). An asym-
metry is also perceptible in the second row, though the cylindrical
coordinate system plays the major role in contributing the positive
peak near the bottom of the layer (0.3 − 0.4 ro) in the radial cor-
relations between ωr and ∇huh in the Northern hemisphere (grey
line). As illustrated above in Fig. 1, the flow diverges mainly at the
extremities of a column with negative ωz, where it encounters the

bottom and top boundaries, but it converges along its length in most
of the bulk. This explains the positive peak of corr(ωz, ∇hzuhz) in
the bottom half of the shell that directly affects the sign of corr(ωr,
∇huh) through equation (23), appearing to result in an inconsistent
behaviour of the Coriolis force in the radial component. It’s the
cylindrical calculation on the right-hand panel of the second row
that is most relevant for this part of the shell. The top four pan-
els show this persistent asymmetry between the two hemispheres
as a direct consequence of the different symmetries between ur/uz

and ωr/ωz. This asymmetry is also seen in the bottom four panels,
though more camouflaged. In particular the third row once again
shows the clear resulting sign of kinetic helicity in the majority of
the shell, consistent with the setup described in Section 2.1.

Fig. 14 shows a segment of the near-surface maps of different
properties of the flow to illustrate the typical behaviour of the flows
at the outer radii common for most strongly stratified models. In
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Helicity inversion mechanism 1719

Figure 13. Correlations between several properties of the flow along the radial direction on the left-hand column (similarly to Fig. 12) and along the cylindrical
z coordinate on the right-hand column. Both columns correspond to model 4 in Table 1. All correlations were calculated at each grid point according to equation
(22), averaged over the horizontal spherical coordinates θ , φ at each radial level r and over time from 102 snapshots distributed over an interval of ∼20 per cent
of a viscous time.

the Northern hemisphere, the flow rises (first panel from the top),
expands as the density decreases (horizontal divergence of the hor-
izontal velocity ∇h · uh, in the third panel) and rotates clockwise
(negative ωr in the second panel, i.e. anticyclones – see Section 2.1).
The same happens when the flow sinks as it is promptly compressed
in the filaments seen in these three panels around the sources
represented by the horizontal divergence of the horizontal flow
∇h · uh.

Fig. 15 illustrates the alternative convection mechanism in the in-
ner part of the shell described in Section 2.2, at a depth of 40 per cent
below the surface of the model. The different dynamics shown above
in Fig. 12 by the inversion of sign in the correlations of the third
row, can also be seen here as positive ur in the top panel of Fig. 15
now correlates with negative horizontal divergence (middle panel)
and thus negative ωr (cyclones, see Section 2.2) due to the action
of the Coriolis force. However, these linkages are less clear than in
Fig. 14, or the idealized description of Section 2.2, partly because

of the complexity of the flow field and because a variety of pro-
cesses contribute at some level to vorticity generation. On average,
though, as Fig. 12 shows, upflows in this region are well correlated
with horizontally convergent flows.

5.2 Columnarity

Contour plots of radial velocity shown in Fig. 7 of the previous
section show the predominance of the columnar convection regime
in the bulk of a spherical shell, as suggested in Section 2.2. Near the
surface both setups of Sections 2.1 and 2.2 are identical, except for
a slight difference in the scale of the convection, since lower value
of Pr is known to produce larger convective flow scales (Jones
et al. 2009). At deeper radial levels as discussed above, columnar
convection tends to remain the dominant type of convection, while
still predominantly plume-like near the surface. Soderlund et al.
(2012) defined a parameter they called ‘Columnarity’, meant to
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Figure 14. Properties of the flow in the upper layer of stronger density
gradient in the Northern hemisphere, in a segment extracted from the right
bottom panel of Fig. 5 (model 11 of Table 1). The radial level corresponds
to the outer white dashed line in the same figure (r = 0.97ro). The dotted
black meridians and latitude circles are 3◦ apart.

determine the degree at which the flow is organized in convection
columns. They defined this parameter from the ratio of the integral
of ωz in the cylindrical z-direction and the integral in z of the total
RMS vorticity ω of the flow:

Cωz =

∑
s,φ

|〈ω′ · ẑ〉z|
∑
s,φ

〈|ω′|〉z
, (25)

where primes mean that vorticity is calculated from the non-
axisymmetric part of the velocity field.

This parameter works well for Boussinesq models, where convec-
tion onsets and remains attached to the inner boundary, unless the
supercriticality is large enough (typically above 50–100 times su-
percritical). We saw that even though this criterion works fairly well
for mildly stratified models (e.g. N � 3), it is not descriptive enough
for strongly stratified models. However, the previous sections sug-
gest that the most likely reason for this is that even though the flow
is still columnar in the bulk, it is not in the outer ∼10 per cent of
the radius. This will naturally affect the total value of Cωz since the
integration includes this outer part of the shell where convection is
not columnar. As a result, the value of Cωz is nearly the same for
models with different helicity patterns. We attempted to calculate
Cωz below deeper radii to remove the major effect of the outer part

Figure 15. Properties of the flow in the lower layer of milder density
gradient and inverted helicity in the Southern hemisphere for model 16 of
Table 1. The radial level now corresponds to r = 0.6ro.

and thus find a way to still use this parameter to distinguish one-
layer helicity models from two-layer. The result is shown in Fig. 16
for several of our models, obtained from snapshots. By excluding
the outer part, it appears indeed possible to separate the two regimes
using Cωz, i.e. to separate the poleward-propagating wave models
from the equatorward ones. The two different rotational regimes
represented by the grey/black lines are also characterized by a gen-
erally higher value of Ro�, as mentioned in previous section.

6 D I S C U S S I O N A N D A P P L I C AT I O N TO STA R S

In many classic theories of stellar and planetary dynamos, the
direction of propagation of dynamo ‘waves’ is determined partly
by the differential rotation and partly by the kinetic helicity (e.g.
Parker 1955; Steenbeck et al. 1966; Moffatt 1978). In broad accor-
dance with this expectation, many prior dynamo simulations that
possessed some form of cyclical behaviour have exhibited pole-
ward propagation of fields (Gilman 1983; Goudard & Dormy 2008;
Ghizaru et al. 2010; Schrinner et al. 2011; Gastine et al. 2012;
Simitev & Busse 2012; Duarte et al. 2013), in keeping with the
realized profiles of helicity and differential rotation but in con-
trast to what is seen in the Sun. Notable exceptions in the stellar
context include Käpylä et al. (2013), Augustson et al. (2013) and
Warnecke et al. (2014), who attributed equatorward propagation
in the simulations primarily to changes in the differential rotation
profile. In those simulations, as in prior ones exhibiting poleward
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Helicity inversion mechanism 1721

Figure 16. Columnarity (Soderlund et al. 2012) as a function of the outer
radius used as the top boundary for the integration/sum in equation (25).
The black lines correspond to models 1, 2, 3, 4, 5, 6, 22, 23, 24, 25, 26,
27, 28, 29, 30 of Table 1, which have the helicity pattern from Section 2.1
and poleward propagation in the case of magnetic cases. The grey lines
correspond to models 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, which have
the helicity pattern described in Section 2.2 and equatorward propagation if
magnetic. The remaining cases of Table 1 do not have a clear helicity pattern
nor a preferred direction of propagation.

propagation, the kinetic helicity of the flows appears to have re-
mained predominantly negative in the Northern hemisphere (posi-
tive in the Southern hemisphere), in accord with theoretical expec-
tations for both columnar and highly stratified convection (as sum-
marized in Section 2.1). In the planetary context, models with equa-
torward propagating dynamo waves in a setup closer to ours were
reported by Jones (2014) and Dietrich & Jones (2014) for ‘failed”
Jupiter-like simulations, carried out at lower values of Prandtl num-
ber and always driven by internal heating.

We have examined here whether the kinetic helicity in global-
scale convection simulations of stars and planets must necessarily
accord with the classic expectation described above (and in Sec-
tion 2.1), or whether other self-consistent profiles are possible. We
have demonstrated that in some cases equatorward migration of
magnetism can arise not from unusual differential rotation profiles,
but from the realization of a kinetic helicity profile that is the oppo-
site to that encountered in many prior simulations. We have focused
here on the mechanisms by which this helicity ‘inversion’ is ac-
complished, while deferring a detailed study of the properties of
dynamo solutions to later work.

Our analysis indicates that the ‘classic’ helicity configuration
commonly results when convection is primarily columnar (as often
occurs in rapidly rotating cases with small to moderate density con-
trasts), when no internal heating occurs, and/or when the Prandtl
number is unity or greater (as adopted in many prior simulations).
But by changing a combination of these factors, we have demon-
strated that the helicity in the bulk of the fluid may switch sign,
becoming positive (in the Northern hemisphere) throughout much
of the rotating domain (rather than just in narrow boundary layers).
This is due in part to the promotion of a second, deeper layer be-
low the outermost regions with a stronger density gradient. In this
deep layer, convective flows are neither columnar nor dominated
by expansion/contraction associated with the density gradient. The
resulting ‘plume-like’ flows there tend to have upflows that are
associated with converging horizontal flows (rather than divergent

ones, as realized in more strongly stratified regions), which in com-
bination with Coriolis forces leads to cyclonic vorticity and positive
kinetic helicity. Lowering the fluid Prandtl number promotes the
disruption of convective columns due to the first-order effect of in-
ertia on the force balance, but additionally the presence of internal
heating in the system and a mild density stratification in the deep
interior help to finalize a stable inversion of the helicity pattern.

In summary, to guarantee plume-like convection in the bulk of
a spherical domain, the three effects required in our models were
strong density stratification (with most of the density gradient con-
fined to the outermost region), lower fluid Prandtl number and a
combination of internal heating and fixed flux boundary conditions
to weaken convection in the bulk. The combination of the last two
effects appears to be particularly essential in our cases. We did not
carry out an extensive study of the relative thickness of the two
helicity layers in each hemisphere, its dependence on control pa-
rameters (including the fluid Prandtl number) or the transitional Pr
needed to reverse the sign of helicity. Because Pr is also a function
of many other control parameters (including Ekman and Rayleigh
numbers and different boundary conditions or heating modes), we
consider this to be beyond the scope of this paper. However, a few
preliminary simulations suggest that the size of the outer layer rela-
tive to the size of the domain – in which the helicity remains negative
in the Northern hemisphere – decreases significantly with Ekman
number. On the other hand, increasing the Rayleigh number (to ap-
proach a Rossby number of order unity) tends to act in the opposite
direction, decreasing the extent of the region of inverted helicity.
Though the simulations considered here are all unstably stratified
throughout their interiors, the fraction of energy carried by the con-
vection is small in some cases (primarily because of the low value
of Pr adopted); we expect this fraction to grow with Ra, and this
may further influence the size of the ‘inverted helicity region. It
is not yet clear how these effects would combine to determine the
helicity profile at much lower E and much higher Ra, but we intend
to examine this in future work.

It is not entirely clear whether the ‘inverted’ kinetic helicity pro-
files explored here, and the accompanying equatorward migration of
magnetic fields, are likely to be realized in stellar or planetary inte-
riors. Some of the factors we have identified as contributing to these
profiles are reliably present: for example, Pr � 1 in many astro-
physical plasmas (including the Sun; see, e.g. Miesch 2005). Like-
wise, the condition that density stratification be comparatively weak
throughout part of the interior, so that the expansion/contraction of
rising/sinking parcels (and the vortical horizontal flows associated
with this) do not utterly dominate the production of kinetic helicity,
is satisfied in many stellar and planetary convection zones. Even in
the Sun, the density scaleheight at the base of the convection zone
is comparable to the depth below the surface, decreasing rapidly
only nearer the photosphere. (Near the photosphere, it seems safe to
assume that the expansion/contraction of rising/falling convective
cells will dominate over other effects, leading to kinetic helicity
that is negative in the Northern hemisphere.) On the other hand,
we have found that extended internal heating is also important for
giving rise to the ‘inverted’ helicity profiles; in its absence (i.e. in
cases heated solely from below), both mixing length theory and our
simulations suggest that (in regions where the density stratification
is weak) the velocity should not increase significantly with radius
outside of a narrow boundary layer. This in turn often leads to the
‘classic’ helicity profile except in the boundary layer. In essence,
the presence of extended internal heating allows a phenomenon that
might otherwise be confined to a narrow boundary layer to persist
throughout much of the fluid. Because of this, we suspect that our
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results may be more relevant to objects like brown dwarfs and very
low mass stars, in which internal energy generation by fusion or
gravitational contraction extends over a large fraction of the inte-
rior (e.g. Chabrier & Baraffe 1997), than to stars like the Sun, in
which the luminosity that must be carried by convection is roughly
constant across the convective envelope. Even in the latter case,
however, it is conceivable that non-standard models in which heat
transport is dominated by cooling from the top boundary (i.e. ‘en-
tropy rain’, as studied in Brandenburg 2015) might lead to kinetic
helicity profiles resembling those here. We defer a more detailed
exploration of these possibilities, and their consequences for stellar
and planetary dynamos, to future work.
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