334 research outputs found
铁转运刺激因子研究进展
2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
DMT1的结构及其基因表达调控
2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
膜铁转运蛋白Ferroportin1的研究进展
2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Effects of swim training on the expression of gastrocnemius’ iron transport proteins in rats
2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Influence of exercise on iron metabolism
2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Energy Consumption Scheduling of HVAC Considering Weather Forecast Error Through the Distributionally Robust Approach
In this paper, the distributionally robust optimization approach (DROA) is proposed to schedule the energy consumption of the heating, ventilation and air conditioning (HVAC) system with consideration of the weather forecast error. The maximum interval of the outdoor temperature is partitioned into subintervals, and the proposed DROA constructs the ambiguity set of the probability distribution of the outdoor temperature based on the probabilistic information of these subintervals of historical weather data. The actual energy consumption will be adjusted according to the forecast error and the scheduled consumption in real time. The energy consumption scheduling of HVAC through the proposed DROA is formulated as a nonlinear problem with distributionally robust chance constraints. These constraints are reformulated to be linear and then the problem is solved via linear programming. Compared with the method that takes into account the weather forecast error based on the mean and the variance of historical data, simulation results demonstrate that the proposed DROA effectively reduces the electricity cost with less computation time, and the electricity cost is reduced compared with the traditional robust method
Insufficient activity of MAPK pathway is a key monitor of Kidney-Yang Deficiency Syndrome.
OBJECTIVE: To explore the genetic characteristics and molecular regulator of Kidney-Yang Deficiency Syndrome (KDS). DESIGN: A typical KDS family was collected using a questionnaire of cold feeling and a 40-item scoring table of KDS based on Traditional Chinese Medicine (TCM), by single-blind method repeated annually over three years. Their transcriptomes were assayed by microarray and validated by RT-PCR and ELISA. Simultaneously, 10 healthy volunteers were recruited as controls and the same protocols were performed. RESULTS: This typical KDS family has 35 members, of whom 11 were evaluated as having severe KDS and 6 as having common KDS. Results of the cDNA microarray revealed that there were 420 genes/expressed sequence tags differentially expressed in KDS transcriptomes, indicating a global functional impairment in the mass-energy-information carrying network of KDS patients, involving energy metabolism, signal transduction, development, cell cycle, and immunity. Pathway analysis by gene set enrichment assay (GSEA) and other tools demonstrated that mitogenic activated protein kinase (MAPK) is among the most insufficiently activated pathways, while the oxidative phosphorylation and glycolysis/gluconeogenesis pathways, the two main pathways relevant to ATP synthesis, were among the most excessively activated pathways in KDS patients. Results of RT-PCR and ELISA confirmed the status of insufficient activity of the MAPK pathway. CONCLUSION: KDS patients undergo overall attenuated functions in the mass-energy-information carrying network. The marked low level of energy output in KDS may be primarily attributed to the insufficient activity of the MAPK pathway, which may be a key monitor for the abnormal energy metabolism and other impaired activities in KDS.published_or_final_versio
PLCL1 rs7595412 variation is not associated with hip bone size variation in postmenopausal Danish women
<p>Abstract</p> <p>Background</p> <p>Bone size (BS) variation is under strong genetic control and plays an important role in determining bone strength and fracture risk. Recently, a genome-wide association study identified polymorphisms associated with hip BS variation in the <it>PLCL1 </it>(phospholipase c-like 1) locus. Carriers of the major A allele of the most significant polymorphism, rs7595412, have around 17% larger hip BS than non-carriers. We therefore hypothesized that this polymorphism may also influence postmenopausal complications.</p> <p>Methods</p> <p>The effects of rs7595412 on hip BS, bone mineral density (BMD), vertebral fractures, serum Crosslaps and osteocalcin levels were analyzed in 1,191 postmenopausal Danish women.</p> <p>Results</p> <p>This polymorphism had no influence on hip and spine BS as well as on femur and spine BMD. Women carrying at least one copy of the A allele had lower levels of serum osteocalcin as compared with those homozygous for the G allele (p = 0.03) whereas no effect on serum Crosslaps was detected. Furthermore, women homozygous for the A allele were more affected by vertebral fractures than those carrying at least one copy of the G allele (p = 0.04).</p> <p>Conclusions</p> <p>In postmenopausal women, our results suggest that the <it>PLCL1 </it>rs7595412 polymorphism has no obvious effect on hip BS or BMD but may be nominally associated with increased proportion of vertebral fracture and increased levels of osteocalcin.</p
Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites
Peer reviewedPublisher PD
Controllable Synthesis of Single-Crystalline CdO and Cd(OH)2Nanowires by a Simple Hydrothermal Approach
Single-crystalline Cd(OH)2 or CdO nanowires can be selectively synthesized at 150 °C by a simple hydrothermal method using aqueous Cd(NO3)2 as precursor. The method is biosafe, and compared to the conventional oil-water surfactant approach, more environmental-benign. As revealed by the XRD results, CdO or Cd(OH)2 nanowires can be generated in high purity by varying the time of synthesis. The results of FESEM and HRTEM analysis show that the CdO nanowires are formed in bundles. Over the CdO-nanowire bundles, photoluminescence at ~517 nm attributable to near band-edge emission of CdO was recorded. Based on the experimental results, a possible growth mechanism of the products is proposed
- …