11,159 research outputs found

    Robust active magnetic dearing control using stabilizing dynamical compensators

    Get PDF
    The robust control of active magnetic bearings, based on a linearised interval model, is considered. Through robust stability analysis, all the first-order robust stabilizing dynamical compensators for the interval system are obtained. Disturbance attenuation and minimum control effort are also addressed. The approach is applied to a high-speed flywheel supported by two active and two passive magnetic bearings. Simulation and experimental results both show that it is simple, effective, and robust

    Robust magnetic bearing control using stabilizing dynamical compensators

    Get PDF
    Abstract—This paper considers the robust control of an active radial magnetic bearing system, having a homopolar, external rotor topology, which is used to support an annular fiber composite flywheel rim. A first-order dynamical compensator, which uses only position feedback information, is used for control, its design being based on a linearized one-dimensional second-order model which is treated as an interval system in order to cope with parameter uncertainties. Through robust stability analysis, a parameterization of all first-order robustly stabilizing dynamical compensators for the interval system is initially obtained. Then, by appropriate selection of the free parameters in the robust controller, the H2 norm of the disturbance-output transfer function is made arbitrarily small over the system parameter intervals, and the norm of the input–output transfer function is made arbitrarily close to a lower bound. Simulation and experimental results demonstrate both stability and performance robustness of the developed controller

    Generally Covariant Conservative Energy-Momentum for Gravitational Anyons

    Get PDF
    We obtain a generally covariant conservation law of energy-momentum for gravitational anyons by the general displacement transform. The energy-momentum currents have also superpotentials and are therefore identically conserved. It is shown that for Deser's solution and Clement's solution, the energy vanishes. The reasonableness of the definition of energy-momentum may be confirmed by the solution for pure Einstein gravity which is a limit of vanishing Chern-Simons coulping of gravitational anyons.Comment: 12 pages, Latex, no figure

    Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice

    Get PDF
    Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under uniaxial tensile stress along the c axis is investigated from first principles. We show that the calculated ideal tensile strength is 6.85 GPa and that the superlattice under the loading of uniaxial tensile stress becomes soft along the nonpolar axes. We also find that the appropriately applied uniaxial tensile stress can significantly enhance the piezoelectricity for the superlattice, with piezoelectric coefficient d33 increasing from the ground state value by a factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the enhancement of piezoelectricity is discussed

    Topological Bose-Mott Insulators in a One-Dimensional Optical Superlattice

    Get PDF
    We study topological properties of the Bose-Hubbard model with repulsive interactions in a one-dimensional optical superlattice. We find that the Mott insulator states of the single-component (two-component) Bose-Hubbard model under fractional fillings are topological insulators characterized by a nonzero charge (or spin) Chern number with nontrivial edge states. For ultracold atomic experiments, we show that the topological Chern number can be detected through measuring the density profiles of the bosonic atoms in a harmonic trap.Comment: 5 pages, published versio

    Condition and capability of quantum state separation

    Full text link
    The linearity of quantum operations puts many fundamental constraints on the information processing tasks we can achieve on a quantum system whose state is not exactly known, just as we observe in quantum cloning and quantum discrimination. In this paper we show that in a probabilistic manner, linearity is in fact the only one that restricts the physically realizable tasks. To be specific, if a system is prepared in a state secretly chosen from a linearly independent pure state set, then any quantum state separation can be physically realized with a positive probability. Furthermore, we derive a lower bound on the average failure probability of any quantum state separation. © 2005 The American Physical Society

    Energy-momentum for Randall-Sundrum models

    Full text link
    We investigate the conservation law of energy-momentum for Randall-Sundrum models by the general displacement transform. The energy-momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is Ï”=Ï”0e−3k∣y∣\epsilon = \epsilon_0 e^{-3k \mid y \mid}.Comment: 13 pages, no figures, v4: introduction and new conclusion added, v5: 11 pages, title changed and references added, accepted by Mod. Phys. Lett.

    Robust Quantum State Transfer in Random Unpolarized Spin Chains

    Get PDF
    We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between Nitrogen-Vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.Comment: 4 pages, 2 figures. V2: Modified discussion of disorder, added references - final version as published in Phys. Rev. Let
    • 

    corecore