139 research outputs found

    High-Resolution Contact Printing with Chemically Patterned Flat Stamps Fabricated by Nanoimprint Lithography

    Get PDF
    Chemically patterned flat stamps provide an effective solution to avoid mechanical stamp-stability problems currently encountered in microcontact printing. A new method is developed to fabricate chemical patterns on a flat PDMS stamp using nanoimprint lithography. Sub-100 nm gold patterns are successfully replicated by these chemically patterned flat PDMS stamps. \ud \u

    Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements

    Get PDF
    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide

    Resource Allocation for Capacity Optimization in Joint Source-Channel Coding Systems

    Full text link
    Benefited from the advances of deep learning (DL) techniques, deep joint source-channel coding (JSCC) has shown its great potential to improve the performance of wireless transmission. However, most of the existing works focus on the DL-based transceiver design of the JSCC model, while ignoring the resource allocation problem in wireless systems. In this paper, we consider a downlink resource allocation problem, where a base station (BS) jointly optimizes the compression ratio (CR) and power allocation as well as resource block (RB) assignment of each user according to the latency and performance constraints to maximize the number of users that successfully receive their requested content with desired quality. To solve this problem, we first decompose it into two subproblems without loss of optimality. The first subproblem is to minimize the required transmission power for each user under given RB allocation. We derive the closed-form expression of the optimal transmit power by searching the maximum feasible compression ratio. The second one aims at maximizing the number of supported users through optimal user-RB pairing, which we solve by utilizing bisection search as well as Karmarka' s algorithm. Simulation results validate the effectiveness of the proposed resource allocation method in terms of the number of satisfied users with given resources.Comment: 6 pages, 6 figure

    Stability studies of ZnO and AlN thin film acoustic wave devices in acid and alkali harsh environments

    Get PDF
    Surface acoustic wave (SAW) devices based on piezoelectric thin-films such as ZnO and AlN are widely used in sensing, microfluidics and lab-on-a-chip applications. However, for many of these applications, the SAW devices will inevitably be used in acid or alkali harsh environments, which may cause their early failures. In this work, we investigated the behavior and degradation mechanisms of thin film based SAW devices in acid and alkali harsh environments. Results show that under the acid and alkali attacks, chemical reaction and corrosion of ZnO devices are very fast (usually within 45 s). During the corrosion, the crystalline orientation of the ZnO film is not changed, but its grain defects are significantly increased and the grain sizes are decreased. The velocity of ZnO-based SAW devices is decreased due to the formation of porous structures induced by the chemical reactions. Whereas an AlN thin-film based SAW device does not perform well in acid–alkali conditions, it might be able to maintain a normal performance without obvious degradation for more than ten hours in acid or alkali solutions. This work could provide guidance for the applications of both ZnO or AlN-based SAW devices in acid/alkali harsh environments

    Development of novel 9-O-substituted-13-octylberberine derivatives as potential anti-hepatocellular carcinoma agents

    Get PDF
    A series of novel 9-O-substituted-13-octylberberine derivatives were designed, synthesised and evaluated for their anti-hepatocellular carcinoma (HCC) activities. Compound 6k showed the strongest activity against three human hepatoma cells including HepG2, Sk-Hep-1 and Huh-7 cells with IC50 values from 0.62 to 1.69 μM, which were much superior to berberine (IC50 >50 μM). More importantly, 6k exhibited lower cytotoxicity against normal hepatocytes L-02 with good lipid-water partition properties. The mechanism studies revealed that 6k caused G2/M phase arrest of the cell cycle, stabilised G-quadruplex DNA, and induced apoptosis via a mitochondrial apoptotic pathway. Finally, the invivo anti-HCC activity of 6k was validated in the H22 liver cancer xenograft mouse model. Collectively, the current study would provide a new insight into the discovery of novel, safe and effective anti-HCC agents

    Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots

    Get PDF
    Flexible electronic devices are normally based on organic polymer substrate. In this work, an ultrathin glass-based flexible, transparent, and ultrasensitive ZnO/glass surface acoustic wave (SAW) humidity sensor is developed using a composite sensing layer of ZnO nanowires (NWs) and graphene quantum dots (GQDs). It shows much larger effective electromechanical coupling coefficients and signal amplitudes, compared to those of flexible polymer-based SAW devices reported in the literature. Attributed to large specific surface areas of ZnO NWs, large numbers of hydrophilic functional groups of GQDs, as well as the formation of p–n heterojunctions between GQDs and ZnO NWs, the developed ZnO/glass flexible SAW sensor shows an ultrahigh humidity sensitivity of 40.16 kHz/% RH, along with its excellent stability and repeatability. This flexible and transparent SAW sensor has demonstrated insignificant deterioration of humidity sensing performance, when it is bent on a curved surface with a bending angle of 30°, revealing its potential applications for sensing on curved and complex surfaces. The humidity sensing and human breathing detection have further been demonstrated for wearable electronic applications using ultrathin glass-based devices with completely inorganic materials

    The Hepatitis B Surface Antigen Binding Protein: An Immunoglobulin G Constant Region-Like Protein That Interacts With HBV Envelop Proteins and Mediates HBV Entry

    Get PDF
    Hepatitis B virus (HBV) infection is a leading cause of liver cirrhosis, liver cancer, and liver failure, affecting 350 million people worldwide. Currently available anti-HBV drugs include (PEGylated-) interferon-α and nucleos(t)ide analogs, which can cause significant side effects and drug-resistance in many cases of long-term treatment. The lack of a reliable and robust in vitro infection system is a major barrier for understanding the HBV life cycle and discovering novel therapeutic targets. In the present study, we demonstrate that overexpression of the hepatitis B surface antigen binding protein (SBP) in HepG2 cells (HepG2-SBP) resulted in their susceptibility to HBV infection. HepG2-SBP cells supported the uptake of the viral surface protein (HBsAg-preS), HBV-pseudotyped virus, and live HBV in patient sera. Moreover, SBP-mediated HBsAg-preS uptake, and HBV pseudotyped virus infections were efficiently blocked by preS1- and SBP-specific antibodies. These observations suggest that SBP is involved in HBV entry and that HepG2-SBP cells can serve as a cellular model to study the post-binding steps of HBV infection

    Wrinkle-Enabled Highly Stretchable Strain Sensors for Wide-Range Health Monitoring with a Big Data Cloud Platform

    Get PDF
    Flexible and stretchable strain sensors are vital for emerging fields of wearable and personal electronics, but it is a huge challenge for them to possess both wide-range measurement capability and good sensitivity. In this study, a highly stretchable strain sensor with a wide strain range and a good sensitivity is fabricated based on smart composites of carbon black (CB)/wrinkled Ecoflex. The sensor exhibits a maximum recoverable strain of up to 500% and a high gauge factor of 67.7. It has a low hysteresis, a fast signal response (as short as 120 ms), and a high reproducibility (up to 5000 cycles with a strain of 150%). The sensor is capable of detecting and capturing wide-range human activities, from speech recognition and pulse monitoring to vigorous motions. It is also applicable for real-time monitoring of robot movements and vehicle security crash in an anthropomorphic field. More importantly, the sensor is successfully used to send signals of a volunteer’s breathing data to a local hospital in real time through a big data cloud platform. This research provides the feasibility of using a strain sensor for wearable Internet of things and demonstrates its exciting prospect for healthcare applications
    • …
    corecore