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Abstract

Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in

the formation of pores in sandstones: precipitation of carbonate cements modifies pores and

inhibits compaction, while dissolution creates secondary pores. This work proposed a precipi-

tation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium

concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth,

pH, PCO2
, variable rock composition and overpressure. Precipitation-dissolution reaction routes

were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation

of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipita-

tion or dissolution. The calculation results indicate that the increasing temperature results in

decrease of equilibrium constant of reactions, while the increasing pressure results in a rela-

tively smaller increase of equilibrium constant; As a result, with increasing burial depth, which

brings about increase of both temperature and pressure, carbonate cements dissolve firstly

and produces the maximal dissolved amounts, and then precipitation happens with further

increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal

value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Mean-

while, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in car-

bonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of

CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol�L-1 and 8.26 mmol�L-1 at

burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influ-

ence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83

MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases

slightly from -2.24 mmol�L-1 to -2.17 mmol�L-1 and remains negative, indicating it is also a pre-

cipitation process at burial depth of 3.9 km where overpressure generated. The method used

in this study can be applied in assessing burial precipitation-dissolution processes and predict-

ing possible pores in reservoirs with carbonate cement-water-carbon dioxide.
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Introduction

For petroleum reservoirs, about one-third are consisted of carbonate rocks, which include cal-

cite and binary or ternary carbonates with Mg, Fe or Mn, e.g., dolomite (CaMg(CO3)2), ferro-

calcite (Ca0.9Fe0.1CO3) and ankerite (CaFe0.5Mn0.5(CO3)2) [1,2]. Within these carbonate

reservoirs, secondary pores are considered as the main storage space, and was formed via

water-rock interaction at different burial depths during diagenesis [3–5]. Besides, for diagene-

sis of source rocks, organic acid and CO2 can be released into sandstone pores and may lead to

the dissolution of carbonate and formation of secondary pores [6]. And in recent years, to cut

CO2 emission into the atmosphere from fossil-fuel power stations, geological sequestration or

underground storage of CO2 in depleted oil and gas reservoirs has been investigated [7–10]; as

a result, the initial physic-chemical equilibrium between the fluid and carbonate cements can

be disturbed and dissolution or precipitation of carbonate cements may occur accordingly

[11]. Prediction of precipitation-dissolution of carbonates can be also applied in microbially

induced calcium-carbonate precipitation(MICP), in which nucleation sites and enzyme of ure-

ase and carbonic anhydrate play important roles for this biochemical process, while factors of

the calcium concentration (Ca2+), the concentration of dissolved inorganic carbon and the pH

are critical for formation of carbonates [12–14].

To predict precipitation/dissolution of carbonate cements at different burial depth with

CO2, systems of calcite or dolomite-water-carbon dioxide under acidic condition were typi-

cally analyzed via ion equilibrium as well as minimization of Gibbs free energy (ΔG) and equi-

librium constant [15,16]. For example, for the carbonate cements, Δ[Ca2+], the variation of

[Ca2+] for every 100 m of burial depths, was analyzed in calcite and dolomite system [3,16]: if

Δ[Ca2+] is positive, dissolution of carbonate happens; otherwise, precipitation takes place.

During diagenesis of carbonate cements, the main factors concerned include temperature,

pressure, pH, PCO2
, variable rock composition, hydrologic regime, fluid composition, organic

acid anion, etc. [17,18]. Among these factors, temperatures play an important role: For the

rock-H2O-CO2 system at different temperatures of 55˚C, 70˚C and 100˚C, the corrosion of

feldspars, silica and clay minerals intensifies with increasing temperature [19]. For CO2 in

these systems, aqueous concentration of metal ions increased with increasing PCO2
in carbon-

ate cements [20,21].

Within carbonates, there are binary or ternary minerals of carbonate cements with Mg, Fe

or Mn, which are common in reservoir of sandstones [1]; these carbonates are important in

formation of secondary pores via precipitation/dissolution within systems of carbonates-

H2O-CO2 in reservoirs. However, study on thermodynamic equilibrium model and ionic con-

centrations in these binary or ternary minerals has been few reported. Meanwhile, effect of

variable rock composition in ankerite, e.g., CaFexMg1-x(CO3)2 (0�x�1) during diagenesis is

also a concern in thermodynamic calculation because of unavailability of thermodynamic

data.

Overpressure, another factor that influences thermodynamic equilibrium as well as dissolu-

tion/precipitation, can be found at reservoirs where fluid pressure exceeds the hydrostatic

pressure [22]. The reason of overpressure can be attributed to disequilibrium compaction, dia-

genesis and hydrocarbon generation, which involves in total organic carbon and hydrogen

index [22]. Overpressure generated in source rock can be estimated via parameters of hydro-

gen index and total organic carbon [23], and can also be used to analyze dissolution/precipita-

tion of carbonate cements in source rocks.

In this work, the authors 1) calculated ΔG and equilibrium constant of reactions in carbon-

ate cements-water-carbon dioxide systems via chemical thermodynamic principles, 2) used

Δ[M2+] (M = Ca2+, Fe2+, Mg2+, or Mn2+) to predict precipitation/dissolution in systems of
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carbonate cements-water-carbon dioxide, and 3) discussed the parameters, e.g., temperature,

pressure, depth, pH, PCO2
and overpressure, that influence the chemical equilibrium and pre-

cipitation/dissolution. This model can be applied in carbonate cements with binary or ternary

minerals in ferrocalcite and ankerite (CaFexMg1-x(CO3)2, 0�x�1) systems for prediction of

precipitation/dissolution in sandstone reservoirs.

Method

The thermodynamic equilibrium model

Temperature and pressure are important parameters in diagenesis at different burial depth; a

temperature gradient of 0.03 K/m and a pressure gradient of 1.0 MPa/100m with a surface

pressure of 105 Pa are given in this work.

The main reactions and equilibrium constant expressions in water-carbon dioxide system

and carbonate cement dissociations are listed in Table 1.

In the current work, the concentrations of carbonate were used because in dilute solutions,

concentrations of carbonates are approximately equal to the activities, and the calculation pro-

cess can be simplified [16].

The direction of those reactions can be analyzed by the Gibbs free energy (ΔG), while ΔG at

different temperatures and pressures can be calculated via Eq 1 [24]:

DrG
0 ¼ DrH

0

Tref
� TDrS

0

Tref
þ

ZT

Tref

DrCPdT �
ZT

Tref

DrCP

T
dT þ

ZP

Pref

DrVdP ð1Þ

where:

DrH0
Tref

standard molar enthalpy of the reaction at 298.15 K and 105 Pa

DrS0
Tref

standard molar entropy of the reaction at 298.15 K and 105 Pa

Table 1. The equilibrium reactions and equilibrium constant expressions in carbonate-H2O-CO2 system

Equilibrium reactions in carbonate-H2O-CO2 Equilibrium constant expressions-a

CO2(g) + H2O, H2CO3 K1 ¼
½H2CO3 �

½PCO2
�

H2CO3 , Hþ þHCO
�

3 K2 ¼
½Hþ�½HCO�

3
�

½H2CO3 �

HCO
�

3
, Hþ þCO3

2�

K3 ¼
½Hþ�½CO2�

3
�

½HCO3
� �

H2O, H+ + OH− K4 = [H+][OH−]

CaCO3 , Ca
2þ
þ CO

2�

3
K5 ¼ ½Ca

2þ
�½CO

2�

3
�

CaMgðCO3Þ2 , Ca
2þ
þMg2þ þ 2CO

2�

3 K6 ¼ ½Ca
2þ
�½Mg2þ�½CO

2�

3
�
2

Ca0:9Fe0:1CO3 , 0:9Ca
2þ
þ 0:1Fe2þ þ CO

2�

3 K7 ¼ ½Ca
2þ
�
0:9
½Fe2þ�

0:1
½CO

2�

3
�

CaFe0:5Mg0:5ðCO3Þ2 , Ca
2þ
þ 0:5Mg2þ

þ0:5Fe2þ þ 2CO
2�

3

K8 ¼ ½Ca
2þ
�½Mg2þ�

0:5
½Fe2þ�

0:5
½CO

2�

3
�
2

CaFeðCO3Þ2 , Ca
2þ
þ Fe2þ þ 2CO

2�

3 K9 ¼ ½Ca
2þ
�½Fe2þ�½CO

2�

3
�
2

MgCO3 ,Mg2þ þCO
2�

3
K10 ¼ ½Mg2þ�½CO

2�

3
�

FeCO3 , Fe2þ þ CO
2�

3
K11 ¼ ½Fe2þ�½CO

2�

3
�

CaFe0:5Mn0:5ðCO3Þ2 , Ca
2þ
þ 0:5Fe2þ

þ0:5Mn2þ þ 2CO
2�

3

K12 ¼ ½Ca
2þ
�½Mn2þ�

0:5
½Fe2þ�

0:5
½CO

2�

3
�
2

MnCO3 , Mn2þ þ CO
2�

3
K13 ¼ ½Mn2þ�½CO

2�

3
�

-a [X] in mmol�L-1 represents the concentration of species X, and K is the thermodynamic equilibrium constant

doi:10.1371/journal.pone.0167035.t001
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CP heat capacity at constant pressure, CP/J�K−1�mol−1 = a + b(T/K) + c(T/K)−2, in which a, b
and c are the coefficients in the heat capacity polynomial.

V molar volume of solid phase and liquid phase

Tref the temperature at 298.15K

Pref the pressure at 105 Pa

ZP

105

DrVdP ¼ ½ð
X

BvBV0

S Þproduction � ð
X

BvBV0

S Þreactant�ðP � 105Þ þ vB

ZP

105

DrVmdP ð2Þ

where:

Vs the molar volume of solid phase, including ion and solid mineral phase.

Vm the molar volume of liquid phase, which was calculated by the Soave-Redlich-Kwong

(SRK) equation, which is capable to predict molar volume of CO2 and H2O, as listed in Eq 3

[25,26].

P ¼
RT

V � b
�

aaðTÞ
VðV þ bÞ

ð3Þ

where

a ¼ 0:42748
R2T2

c

Pc
ð4Þ

b ¼ 0:08664
RTc

Pc
ð5Þ

aðTÞ ¼ ð1þ ð0:485þ 1:574o � 0:176o2Þð1 �
ffiffiffiffiffi
Tr

p
ÞÞ

2
ð6Þ

The critical temperature (Tc), critical pressure (Pc) and acentric factor (ω) were applied in

SRK equation and are listed in Table 2 [27].

Based on ΔG, the equilibrium constant of reactions (K) can be calculated via Eq 7:

DG ¼ DG0 þ RT lnK ð7Þ

in which ΔG0 is the standard Gibbs free energy of the reaction at 298.15K and 105 Pa, T is the

absolute temperature in Kelvin, and R is the gas constant (8.314 J�K−1�mol−1).

In the system of calcite-water-carbon dioxide, the charge balance equations or electroneu-

trality are calculated by the positive and negative ions as followed [28]:

½Hþ� þ 2½Ca2þ� ¼ 2½CO2�

3
� þ ½HCO�

3
� þ ½OH� � ð8Þ

For the systems of the dolomite or ankerite, Eq 8 can be revised as Eq 9.

½Hþ� þ 2½Ca2þ� þ 2½Fe2þ� þ 2½Mg2þ� ðor ½Mn2þ�Þ ¼ 2½CO2�

3
� þ ½HCO�

3
� þ ½OH� � ð9Þ

According to the equilibrium expressions of H2O-CO2 (Table 1), electroneutrality equation

Table 2. The critical values of carbon dioxide and water

Tc(K) Pc(bar) ω
CO2(g) 304.2 73.8 0.224

H2O 647.1 220.6 0.345

doi:10.1371/journal.pone.0167035.t002
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(Eq 9) with different carbon dioxide pressure (PCO2
) and the equilibrium constants (K or K’) of

carbonate, the quartic equation related to [H+] can be obtained via Eqs 10 and 11, as followed:

ð
2K

K1 � K2 � K3 � ðPCO2
Þ
Þ½Hþ�4 þ ½Hþ�3 � ðK1 � K2 � ðPCO2

Þ þ K4Þ½H
þ� � 2ðPCO2

Þ � K1 � K2 � K3

¼ 0 ð10Þ

ð
4
ffiffiffiffiffi
K0
p

K1 � K2 � K3 � ðPCO2
Þ
Þ½Hþ�4 þ ½Hþ�3 � ðK1 � K2 � ðPCO2

Þ þ K4Þ½H
þ� � 2ðPCO2

Þ � K1 � K2 � K3

¼ 0 ð11Þ

Eq 10 can be applied to in the systems of MCO3−CO2−H2O (M = Ca, Fe, Mg or Mn) and

Ca0.9Fe0.1CO3−CO2−H2O, while Eq 11 can be applied to in the system of dolomite or ankerite.

Based on [H+], the concentration of other species, such as [Ca2+], [HCO�
3

] and [OH−],

can be calculated according to equilibrium expressions and equilibrium constant of reac-

tion, while Δ[Ca2+], the variation of [Ca2+] equilibrium concentration for every 100 m of

burial depths, can be calculated to predict precipitation or dissolution occurring in carbon-

ate cement system.

Thermodynamic data of ferrocalcite and ankerite

The standard Gibbs free energy of formation (ΔfG0) of minerals can be found from data-

bases or literatures [29–31], while neither equilibrium constant nor ΔfG0 for ferrocalcite

(Ca0.9Fe0.1CO3) and ankerite (CaFe0.5Mg0.5(CO3)2) can be found to calculate the equilib-

rium concentration. However, a linear correlation exists between Gibbs free energies of for-

mation of calcite-like carbonate and the corresponding aqueous divalent cations, and can

be used to estimate the basic thermodynamic value of ferrocalcite (Ca0.9Fe0.1CO3) [32].

Meanwhile, the equation of ankerite dissociation (Eq 12) can be deduced by combining cal-

cite dissociation and Eq 13, and the corresponding equilibrium constant of ankerite dissoci-

ation (CaFe0.5Mg0.5(CO3)2), K8, is shown in Eq 14, while K
�

is the equilibrium constant of

Eq 13:

CaFe0:5Mg
0:5
ðCO3Þ2 , Ca2þ þ 0:5Fe2þ þ 0:5Mg2þ þ 2CO2�

3
ð12Þ

2CaCO3 þ 0:5Fe2þ þ 0:5Mg2þ , Ca2þ þ CaFe0:5Mg
0:5
ðCO3Þ2 ð13Þ

K8 ¼ ½Ca2þ�½Fe2þ�
0:5
½Mg2þ�

0:5
½CO2�

3
�
2
¼

K2

1

K�
ð14Þ

K� ¼
½Ca2þ�

½Fe2þ�
0:5
½Mg2þ�

0:5
¼

½Ca2þ�½CO2�

3
�

½Fe2þ�
0:5
½Mg2þ�

0:5
½CO2�

3
�

ð15Þ

The thermodynamic data used in this work are shown in Table 3.

Because of the instability in solution, carbonic acid can be treated as CO2(g) dissolved in

water as CO2(aq) [35,36]. When T
Tc
�0.98, Bhirud Equation in Eq 16 can be applied to calcu-

late its molar volume; when T
Tc
>0.98, molar volume is considered as a constant because the
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influence of temperature and pressure on molar volume is slight in the liquid phase [37].

lnð
PcV
RT
Þ ¼ lnu0 þ lnu1 ¼ lnu ð16Þ

Where: u0 and u1 are dimensionless and are a function of Tr ¼
T
Tc

.

lnu0 ¼ � 0:40062 � 8:0006Tr þ 49:3780T2
r � 170:6616T3

r þ 287:6989T4
r

� 232:5608T5
r þ 73:03299T6

r

ð17Þ

lnu1 ¼ 13:4412 � 135:7437Tr þ 533:38T2
r � 1091:453T3

r þ 1231:43T4
r

� 728:227T5
r þ 176:737T6

r

ð18Þ

To verify the estimated thermodynamic data obtained by the current thermodynamic

calculation method (TCM), the Helgeson-Kirkham-Flowers (HKF) equation was used for

comparison [38]. The equilibrium constants of bicarbonate (K3) and water dissociation

(K4) were selected and calculated by methods of TCM and HKF, respectively, and the results

and relative differences are listed in Table 4; the results indicate that TCM is an effective

Table 3. The thermodynamic data of carbonate minerals. Data from [33] and [34] are marked as−a and−b.

Species ΔfH (kJ/mol) S (J/mol/K) V (cm3/mol) Cp / J�K−1�mol−1 = a + b(T / K) + c(T / K)−2

a b c

Calcite-a -1207.88 92.50 36.89 140.9 0.005029 -950700

Dolomite-a -2325.76 156.10 64.29 358.9 -0.00495 0

Magnesite-a -1110.93 65.50 28.03 186.4 -0.003772 0

Siderite-a -762.22 93.30 29.43 168.4 0 0

Rhodochrosite-a -892.28 98.00 31.07 169.5 0 0

CaFe(CO3)2
-a -1970.62 188.46 66.06 341.0 0.001161 0

Ca0.1Fe0.9(CO3)2 -1178.19 92.678 36.16 87.1 0.052325 2093000

CO2(g)-a -393.51 213.7 0 87.8 -0.002644 706400

H2O(aq)-b -285.8 70 18.07 30.5 0.0103 0

H2CO3
-b -699.648 187.443 - 0.000 0.70291 0

Ca2+-a -543.3 -56.50 -18.06 0 0.069 0

Mg2+-a -465.96 -138.10 -21.55 0 0.0462 0

Fe2+-a -90.42 -107.11 -22.20 0 0 0

Mn2+-a -220.39 -73.57 -17.1 0 0.04184 0

H+-a 0 0 0 0 0 0

OH−-a -230.02 -10.71 -4.18 0 0 0

HCO3
−-b -691.992 91.211 24.6 0.000 -0.12468 0

CO2�

3

-a -675.23 -50.00 -5.02 0 0 0

doi:10.1371/journal.pone.0167035.t003

Table 4. Comparison of equilibrium constants calculated by thermodynamic calculation method (TCM) and HKF equation in system of CO2-H2O

P(Pa) T(K) K3 K4

TCM HKF-a 4 TCM HKF-a 4

1.0 298.15 4.57×10−11 4.69×10−11 -2.56% 1.03×10−14 1.00×10−14 2.91%

1000.0 373.15 2.38×10−10 2.42×10−10 -1.65% 5.48×10−13 5.38×10−13 1.86%

-a [3]

doi:10.1371/journal.pone.0167035.t004
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way to calculate the equilibrium constant, as compared with HKF equation, while less

parameters are needed for TCM.

The effect of variable composition in ankerite system and overpressure

in carbonate systems

The thermodynamic method was used to analyze the influence of variable rock composition in

the ankerite system (CaFexMg1-x(CO3)2, 0�x�1), in which CaFe0.2Mg0.8(CO3)2,

CaFe0.3Mg0.7(CO3)2, CaFe0.5Mg0.5(CO3)2, CaFe0.7Mg0.3(CO3)2 and CaFe(CO3)2 are selected

and named as ank2, ank3, ank5, ank7 and ank10, respectively.

Overpressure is defined as fluid pressure exceeding the hydrostatic pressure, and is always

found in the burial depth from 3.2 km and 3.9 km; for example, overpressure was reported

with variation up to 83 MPa at 3.9 km in smulation experiments [23]. Based on the values of

overpressure from 36 MPa to 83 MPa, a CaFe(CO3)2 system with 800 mg/g of hydrogen index

at a burial depth of 3.9 km was selected, and data of ΔrG and equilibrium constant were calcu-

lated, as listed in Table 5.

The overall methodology is shown in Fig 1: the minimization of ΔG and equilibrium con-

stant of reactions were calculated in carbonate cements-water-carbon dioxide systems via

Table 5. The overpressure,ΔrG and equilibrium constant in CaFe(CO3)2- H2O- CO2 system

Overpressure(MPa) ΔrV
0(P−P0)(m3�Pa−1�mol−1) ΔrG(kJ�mol−1) lgK

36 -4177.32 176.44 -22.20

51 -5922.72 174.70 -21.98

65 -7551.76 173.07 -21.78

78 -9064.44 171.56 -21.59

83 -9646.24 170.97 -21.51

in which P0 is the pressure at 105 Pa

doi:10.1371/journal.pone.0167035.t005

Fig 1. Flow diagram of the calculation method.

doi:10.1371/journal.pone.0167035.g001
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chemical thermodynamic parameters, and the Δ[M2+] (M = Ca2+, Fe2+, Mg2+, or Mn2+) were

analyzed to predict precipitation/dissolution with variable parameters, e.g., temperature, pres-

sure, depth, pH, PCO2
, variable rock composition and overpressure.

Results and Discussion

Chemical equilibrium constant of reactions in carbonate-water-carbon

dioxide system

The equilibrium constants calculated from ΔG of reaction can be used to calculate equilibrium

constant and to analyze equilibrium concentration of ions, such as [Ca2+], [Mg2+], [Fe2+] or

[Mn2+]. The influence of 1) temperature, 2) pressure and 3) burial depth on equilibrium con-

stant of calcite-H2O-CO2 was firstly analyzed.

As shown in Table 6, when the temperature increases from 301.15 K to 478.15 K, lgK

decreases from -8.53 to -9.69; meanwhile, when the pressure increases from 15 to 70 MPa at

301.15 K, lgK increase slightly from -8.53 to -7.82. The result indicates that temperature has a

higher impact on lgK on an opposite direction, as compared with pressure. As a result, when

the burial depth increases from 1.5 km to 6.0 km, the temperature increases from 343.15 K to

478.15K and pressure increases from 15 MPa to 60 MPa; meanwhile, lgK decreases from -8.69

to -9.39.

Based on the aforementioned method, the equilibrium constants of carbonates-H2O-CO2

at different depths were then calculated, as shown in Fig 2. The results indicate that lgK are

negative at different burial depth, while the ΔG are positive (ΔG = −RT ln K), indicating that

those processes cannot take place automatically.

For the water-carbon dioxide system in Fig 2A, the equilibrium constant of carbon dioxide

dissolving in water and forming carbonic acid, lgK1, ranges from -1.12 to -1.97 and reaches the

minimum of -1.97 at depth of 4.0 km. LgK2 (the equilibrium constant of carbonic acid dissoci-

ation) reaches the maximum of -6.23 at about 1.5 km, and then decreases continuously with

further increasing depth. The equilibrium constant of secondary dissociation of carbonic acid,

lgK3, ranges from -10.31 to -8.60 at the depth from 0.0 km to 7.0 km, which is about three

orders of magnitude lower than K2. Furthermore, the equilibrium constant of water dissocia-

tion, lgK4, is increasing from -14.00 to -10.10 with increasing burial depth.

For the equilibrium constant of carbonate cement dissociation in Fig 2B, calcite (K5) and

magnesite (K10) show a similar trend of decreasing with burial depth increased. Meanwhile,

the equilibrium constant of ferrocalcite dissociation (K7) locates between those of calcite (K5)

and siderite (K11); in the mean time, the equilibrium constants of dolomite (K6),

CaFe0.5Mg0.5(CO3)2 (K8), CaFe(CO3)2 (K9) and CaFe0.5Mn0.5(CO3)2 (K12) in Fig 2C are several

orders of magnitude lower than those of other carbonate cements in Fig 2B. Through the

Table 6. ΔG and equilibrium constants (K) with different temperatures, pressures and burial depths in calcite-H2O-CO2

Depth(km) Temperature(K) Pressure(MPa) ΔG(J/mol) lgK

- 301.15 15 49166.56 -8.53

- 478.15 15 88688.97 -9.69

- 301.15 50 46288.02 -8.03

- 301.15 70 45088.62 -7.82

0 298.15 0.1 48681.85 -8.53

1.5 343.15 15 57103.05 -8.69

4.0 418.15 40 72544.71 -9.06

6.0 478.15 60 85970.32 -9.39

doi:10.1371/journal.pone.0167035.t006
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equilibrium constants, the concentrations of dissolved species in aqueous solution were then

calculated.

Calculation of Δ[M2+] for prediction of precipitation/dissolution of

carbonate cements with different CO2 mole fraction

The data of 1) Δ[Ca2+] in calcite, dolomite, ferrocalcite and ankerite, 2) Δ[Fe2+] in siderite, 3)

Δ[Mg2+] in magnesite and 4) Δ[Mn2+] in rhodochrosite were analyzed; in these cases, Δ[M2+]

is defined as the variation of equilibrium [M2+] for every 100 m of burial depths, and can indi-

cate the dissolution or precipitation during diagenesis.

As shown in Fig 3A, with the CO2 mole fraction at 0.1%, the systems of calcite, dolomite,

magnesite and rhodochrosite are shown a trend of dissolving because Δ[M2+] are positive at

depth from 0.0 km to 3.2 km, 2.7 km, 1.8 km and 2.0 km, respectively, indicating the secondary

pores may form during this dissolution process; and in this dissolution process, the systems of

calcite, dolomite, magnesite and rhodochrosite produce maximal concentrations of 1.37, 0.52,

1.35 and 0.58 mmol�L-1 at depth of 0.8 km, 0.7 km, 0.5 km and 0.5 km. As to systems of calcite

and dolomite, the amount of dolomite dissolved was smaller than that of calcite at different

depth, thus the dolomitization of limestone may decrease the porosity [39,40]. With further

increasing depth deeper than 3.2 km, 2.7 km, 1.8 km and 2.0 km in cements of calcite, dolo-

mite, magnesite and rhodochrosite, respectively, Δ[M2+] turns to negative, suggesting that pre-

cipitation occurs in these systems.

On the other hand, carbon dioxide partial pressure has effect on these systems of carbonate

cements-water-carbon dioxide, as shown in Fig 3: with increasing CO2 mole fraction, the sys-

tems of calcite, dolomite, magnesite and rhodochrosite still show a similar trend of dissolving

firstly and then precipitating with the increasing depth, while the maximal values are also

obtained at the same depths. Nevertheless, the maxima of dissolving amount in systems of cal-

cite, dolomite, magnesite and rhodochrosite were obtained near depth of 0.5–0.8 km, and

increase by about four times with the partial pressure of carbon dioxide increasing from 0.1%

to 10.0%, indicating that increasing partial pressure of CO2 results in the instability or dissolu-

tion of these carbonate cements, thus promoting the formation of secondary pore [41].

The relationship between Δ[M2+] and depth in cements of CaFe0.5Mg0.5(CO3)2,

Ca0.9Fe0.1(CO3)2, CaFe(CO3)2, FeCO3 and CaFe0.5Mn0.5(CO3)2 at different CO2 mole fraction

are shown in Fig 3D–3F. These five carbonate cements show a similar trend of dissolution

Fig 2. The equilibrium constants (K1-K13) at different burial depth in carbonate-water-carbon dioxide system. (a): the equilibrium

constants in water-carbon dioxide systems; (b-c): the equilibrium constants in carbonate cements-water-carbon dioxide.

doi:10.1371/journal.pone.0167035.g002
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firstly followed by precipitation. For example, in the CaFe0.5Mg0.5(CO3)2 system, dissociation

happens within 0.0–3.0 km and precipitation occurs with depth deeper than 3.0 km, which is

similar to the results reported by [1]: in Wilcox (Eocene) sandstones, ankerite

(CaFe0.5Mg0.5(CO3)2) precipitates at depths deeper than 3.2 km. The slight difference in depth

can be attributed to geological factors, such as the burial history, organic acid anions and

chemical compaction. In Fig 3D–3F, with the carbon dioxide mole fraction increasing from

0.1% to 10.0%, the maximal amounts of dissolved cements increase and obtained near depth

of 0.7–0.9 km. For example, the maximal dissolved siderite (FeCO3) at depth of 0.7 km

increases from 0.21 mmol�L-1 to 0.86 mmol�L-1 with CO2 mole fraction increasing from 0.1%

to 10.0%.

The relationship between carbonate species concentration and PCO2
in

ankerite (CaFe0.5Mg0.5 (CO3)2) system at depth of 2.5 km

For carbonate cements-H2O-CO2 systems with different cements and CO2 mole fraction, car-

bonate species, e.g., HCO3
- and CO3

2-, play an important role in dissolution/precipitation of

Fig 3. The increment of ion concentration, Δ[M2+], as a function of depth in carbonate cement systems with 1) Δ[Ca2+] in calcite,

dolomite, ferrocalcite and ankerite, 2) Δ[Fe2+] in siderite, 3) Δ[Mg2+] in magnesite and 4) Δ[Mn2+] in rhodochrosite, in which Δ[M2+] is

defined as the variation of [M2+] for every 100 m of burial depths.

doi:10.1371/journal.pone.0167035.g003
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cements. System of CaFe0.5Mg0.5(CO3)2 was then selected as a model to analyze effect of

CO2 mole fraction on variation of carbonate species (total dissolved inorganic carbon,

DIC ¼ ½CO2ðaqÞ� þ ½HCO�
3
� þ ½CO2�

3
�) at burial depth of 2.5 km with 373.15 K and 25 MPa.

As shown in Fig 4, pH decrease from 7.6 to 6.2 with PCO2
increasing from 0 MPa to 1.0×10−3

MPa, while the total amount of DIC, [CO2(aq)], ½HCO�
3
� increase continuously. ½CO2�

3
� var-

ies at a range of 1.28×10−3–1.95×10−4 mmol�L-1, and is about three orders of magnitude

smaller than that of ½HCO�
3
�.

The pH at different depth in carbonate cements-H2O-CO2 systems

The relationship between pH at different CO2 mole faction and depth in carbonate cement sys-

tems was also analyzed and is shown in Fig 5. For the calcite system in Fig 5A, the pH decreases

from 7.9 to 5.8 with increasing burial depth from 0.0 km to 7.0 km at CO2 mole fraction 0.1%,

and this variation can be attributed to the dissolution of primary minerals [42]. It is worth to

note that as the depth increases from 0.0 km to 1.0 km, pH decreases sharply from 7.9 to 6.4.

For the effect of CO2 mole fraction, pH decreases from 6.0 to 5.3 and to 4.6 with CO2 mole

fraction increasing from 0.1% to 1.0% and to 10.0%, respectively, at depth of 4.0 km.

Fig 4. Distribution of carbonate species in CaFe0.5Mg0.5(CO3)2 system as a function of PCO2
at 373.15 K and 25 MPa. (DIC, total

dissolved inorganic carbon, DIC ¼ ½CO2ðaqÞ� þ ½HCO�
3
� þ ½CO2�

3
�)

doi:10.1371/journal.pone.0167035.g004
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Other carbonate cements in Fig 5B–5H show a similar trend of decreasing pH with increas-

ing CO2 mole fraction. Among these cements, the siderite-water-carbon dioxide system pro-

duces the lowest pH of 3.5 at depth of 4.0 km (CO2 mole fraction 10.0%), which can be

attributed to hydrolysis of ferrous ion [43].

The main dissolved species generated during the dissolution process in

carbonate cements

To find the main species generated during the dissolution/precipitation process, the relation-

ship between calcium and bicarbonate ion at different depth was analyzed. In Fig 6A of the cal-

cite system, ½HCO�
3
� is increasing from 1.21 mmol�L-1 to a maximum of 4.32 mmol�L-1 as

depth ranging from 0.0 km to 0.8 km with CO2 mole fraction of 0.1%; with depth deeper than

0.8 km, ½HCO�
3
� is decreasing to 0.59 mmol�L-1 at 7.0 km. Other carbonate cements also show

a similar trend.

For the effect of CO2, with increasing CO2 mole fraction from 0.1% to 10.0%, ½HCO�
3
�

increases remarkably at the same depth, as shown in Fig 6. For example, ½HCO�
3
� in the calcite

system increases from 4.32 mmol�L-1 to 20.07 mmol�L-1 with CO2 mole fraction increasing

from 0.1% to 10.0% at depth of 0.8 km.

The relationship between [Ca2+] and ½HCO�
3
� was studied as well, and a linear relationship

was found, as shown in Fig 7: in the calcite system, ½HCO�
3
� increases from 1.21 mmol�L-1 to

4.32 mmol�L-1 at 0.1% of CO2 mole fraction when depth increasing from 0.0 km to 0.8 km,

and [Ca2+] increases linearly from 0.61 mmol�L-1 to 2.16 mmol�L-1 (Fig 7A). With increasing

CO2 mole fraction from 0.1% to 10.0%, there is still a linear relationship in other carbonate

cements, as shown in Fig 7.

Fig 5. pH of carbonate cements-H2O-CO2 system with different burial depth and CO2 mole fraction.

doi:10.1371/journal.pone.0167035.g005
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The influence of variable rock composition in ankerite-H2O-CO2 system

Ankerite consists of variable compositions, and the influence of variable composition on pre-

cipitation/dissolution was analyzed. As shown in Fig 8A, Δ[Ca2+] indicates that ankerite

(CaFexMg1-x(CO3)2, 0�x�1) system dissolves at depth smaller than 3.5 km with a maximal

dissolved amount at depth of 0.8 km, but precipitates with depth deeper than 3.5 km. With the

increasing Fe content (from ank2 to ank7), the amount of dissolved or precipitated carbonates

Fig 6. [HCO3
-] as a function of depth with different CO2 mole fraction in carbonate cements-CO2-H2O systems.

doi:10.1371/journal.pone.0167035.g006

Fig 7. The linear relationship between [Ca2+] and [HCO3
-].

doi:10.1371/journal.pone.0167035.g007
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is also increased. Meanwhile, CaFe(CO3)2 (ank10) is an exception: the amount of precipitation

or dissolution is the lowest among these ankerite cements. The reason can be attributed to that

the end-member of CaFe(CO3)2 mainly exists as a two-phase mineral with both calcite and sid-

erite [44]. On the effect of CO2, Δ[Ca2+] increases by about four times with CO2 mole fraction

increasing from 0.1% to 10.0%, which is shown in Fig 8, indicating that the amount of dis-

solved carbonate cements also increases with increasing CO2 mole fraction.

The relationship between pH and concentration of [Ca2+] in ankerite-H2O-CO2 system

was also studied. As shown in Fig 9A of ank2 system, with the decrement of pH, [Ca2+] reaches

the maximum of 0.80 mmol�L-1 at CO2 mole fraction of 0.1%, indicating dissolution may hap-

pen; then the [Ca2+] drops with pH further decreasing, indicating there can be precipitation

and formation of carbonate cement. With increasing CO2 mole fraction, the maxima of [Ca2+]

Fig 8. The variation of calcium ion at different burial depth in ankerite system with variable compositions.

doi:10.1371/journal.pone.0167035.g008

Fig 9. The relationship between pH and [Ca2+] in ankerite-H2O-CO2 system.

doi:10.1371/journal.pone.0167035.g009
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increase and emerge at lower pHs, e.g., 0.80 mmol�L-1 at pH = 5.5 for 0.1% of CO2, 1.72

mmol�L-1 at pH = 4.8 for 1.0% of CO2, and 3.70 mmol�L-1 at pH = 4.2 for 10.0% of CO2 in sys-

tem of ank2. With increment of Fe content in ankerite (CaFexMg1-x(CO3)2, 0�x�1) system, as

shown in Fig 9A–9D), the maximum of [Ca2+] also increases as well. The ank10 (CaFe(CO3)2)

is an exception: as shown in Fig 9E, [Ca2+] varies from 0.3 mmol�L-1 to 2.5 mmol�L-1 in CaFe

(CO3)2 at CO2 mole fraction of 10.0%, which is the lowest in ankerite system, and can also be

attributed to that the end-member of CaFe(CO3)2 does not exist as one-phase mineral [44].

The influence of overpressure on carbonate cements-H2O-CO2

The pressure variation during diagenesis can be applied to estimate the overpressure and to

calculate the equilibrium constant. Effect of overpressure on carbonates systems was studied

at depth of 3.9 km with 800 mg/g of hydrogen index where overpressure generated. As

shown in Fig 10A, with the increasing overpressure, the equilibrium constants of 1) forma-

tion of carbonic acid (K1), 2) formation of bicarbonate (K2) and 3) water dissociation (K4)

decrease. Meanwhile, the equilibrium constants of dissociation of carbonate cements (K5-

K13) increase with increasing overpressure in Fig 10B and 10C. For example, over ferrocal-

cite (Ca0.9Fe0.1CO3), the equilibrium constant (K7) ranges from 7.8×10−12 to 2.2×10−11 with

overpressure increasing from 36 MPa to 83 MPa. The equilibrium constants of dolomite

(K6), CaFe0.5Mg0.5(CO3)2 (K8) and CaFe(CO3)2 (K9) are several orders of magnitude lower

than those of other carbonate cements.

Fig 10. The equilibrium constant and overpressure at depth of 3.9 km with 800 mg/g of hydrogen index, (d) The relationship between

overpressure and pH with CO2 mole fraction 0.1% at a burial depth of 3.9 km with 800 mg/g of hydrogen index, and (e) Δ[Ca2+] at

different overpressures with CO2 mole fraction of 0.1%.

doi:10.1371/journal.pone.0167035.g010
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The relationship between overpressure and pH was also analyzed, as shown in Fig 10D. The

overpressure ranging from 36 MPa to 83 MPa at CO2 mole fraction of 0.1% leads to a minimal

pHs of 6.8, 6.2, 6.3 and 6.4 at 51 MPa in the systems of calcite, ferrocalcite (Ca0.9Fe0.1CO3),

ank10(CaFe(CO3)2) and ankerite(CaFe0.5Mn0.5(CO3)2), respectively. Meanwhile, system of

siderite (FeCO3) produces the lowest pH at this range of overpressure.

Effect of overpressure on Δ[Ca2+] was studied as well. As shown in Fig 10E, in the calcite

system, with increasing overpressure from 36 MPa to 83 MPa, Δ[Ca2+] increases slightly from

-2.24 mmol�L-1 to -2.17 mmol�L-1 and remains negative, indicating it is still a precipitation

process at depth of 3.9 km where overpressure generated. Other carbonate cements also show

a similar trend of precipitation at depth of 3.9 km where overpressure generated, and the mag-

nesite system produces the lowest Δ[Ca2+] from -3.79 mmol�L-1 to -3.75 mmol�L-1. This result

is helpful to predict the accumulated space or reservoir formed in sandstone and source rock

during diagenesis.

Conclusions

The minimization of ΔG and equilibrium constant of reactions in carbonate cements-water-

carbon dioxide systems were calculated via chemical thermodynamic principles. Δ[M2+], cal-

culated from equilibrium concentration, was applied to predict the precipitation/dissolution

process.

The results indicate that with increasing burial depth, carbonate cements with binary or ter-

nary minerals in ferrocalcite and ankerite (CaFexMg1-x(CO3)2, 0�x�1) dissolve firstly and

produce maximal dissolved amounts, while precipitation happens later. For example, calcite is

dissolving from 0.0 km to 3.0 km with the maximal value of [Ca2+] obtained at depth of 0.8

km, and then precipitates with deeper depth than 3.0 km.

On effect of CO2 mole fraction, with the increasing CO2 mole fraction from 0.1% to 10.0%

in carbonate system, the aqueous concentrations of metal species show a similar trend of

increase firstly and then decrease. For example, dissolved amount of CaFe0.7Mg0.3(CO3)2

increases and reaches a maximum of 1.78 mmol�L-1 at a burial depth of 0.7 km with CO2 mole

fraction at 0.1%, while 8.26 mmol�L-1 is obtained at the same depth of 0.7 km with 10.0% of

CO2.

For the influence of overpressure generated during diagenesis, with the overpressure ranging

from 36MPa to 83 MPa in calcite system, Δ[Ca2+] increases slightly from -2.24 mmol�L-1mmol�L-1

to -2.17 mmol�L-1mmol�L-1, indicating it is also a precipitation process at burial depth of 3.9 km

where overpressure generated.
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