89 research outputs found

    A fatal outcome of pica

    Get PDF
    A previously healthy 31 year old African male was assisting friends with the repair of the roof of a neighboring house. That evening at a social gathering the man complained of an apparent headache and went home early where he later died suddenly and unexpectedly. No history indicating the possibility of an underlying psychiatric illness was obtained. Due to the nature and circumstances surrounding the sudden unexpected death the body was referred for a medico-legal investigation in terms of the Inquests Act 58 of 1959.http://link.springer.com/journal/120242017-01-31hb2016Forensic Medicin

    Metabolomics of colistin methanesulfonate treated Mycobacterium tuberculosis

    Get PDF
    Over the past 5 years, there has been a renewed interest in finding new compounds with anti-TB action. Colistin methanesulfonate or polymyxin E, is a possible anti-TB drug candidate, which may in future be used either alone or in combination to the current 6 month “directly observed treatment short-course” (DOTS) regimen. However its mechanism of action has to date not yet been fully explored, and only described from a histological and genomics perspective. Considering this, we used a GCxGC-TOFMS metabolomics approach and identified those metabolite markers characterising Mycobacterium tuberculosis (Mtb) cultured in the presence of colistin methanesulfonate, in order to better understand or confirm its mechanism of action. The metabolite markers identified indicated a flux in the metabolism of the colistin methanesulfonate treated Mtb towards fatty acid synthesis and cell wall repair, confirming previous reports that colistin acts by disrupting the cell wall of mycobacteria. Accompanying this, is a subsequently elevated glucose uptake, since the latter now serves as the primary energy substrate for the upregulated glyoxylate cycle, and additionally as a precursor for further fatty acid synthesis via the glycerolipid metabolic pathway. Furthermore, the elevated concentrations of those metabolites associated with pentose phosphate, valine, threonine, and pentanediol metabolism, also confirms a shift towards glucose utilization for energy production, in the colistin methanesulfonate treated Mtb.Prof. Anton Stoltz and Prof. Ed Nardell are specifically thanked for their funding towards the cell cultures. The North West University is thanked for financial assistance of the research which forms part of a master's study.http://intl.elsevierhealth.com/journals/tube2019-07-01hj2018Internal Medicin

    Immune Dysregulation Is Associated with Neurodevelopment and Neurocognitive Performance in HIV Pediatric Populations—A Scoping Review

    Get PDF
    HIV-1 is known for its complex interaction with the dysregulated immune system and is responsible for the development of neurocognitive deficits and neurodevelopmental delays in pediatric HIV populations. Considering that HIV-1-induced immune dysregulation and its association with neurodevelopmental and neurocognitive impairments in pediatric populations are not well understood, we conducted a scoping review on this topic. The study aimed to systematically review the association of blood and cerebrospinal fluid (CSF) immune markers with neurocognitive deficits and neurodevelopmental delays in pediatric HIV populations. PubMed, Scopus, and Web of Science databases were searched using a search protocol designed specifically for this study. Studies were selected based on a set eligibility criterion. Titles, abstracts, and full texts were assessed by two independent reviewers. Data from the selected studies were extracted and analyzed by two independent reviewers. Seven studies were considered eligible for use in this context, which included four cross-sectional and three longitudinal studies. An average of 130 (±70.61) children living with HIV, 138 (±65.37) children exposed to HIV but uninfected and 90 (±86.66) HIV-negative participants were included across the seven studies. Results indicate that blood and CSF immune markers are associated with neurocognitive development/performance in pediatric HIV populations. Only seven studies met the inclusion criteria, therefore, these limited the number of significant conclusions which could have been made by using such an approach. All considered, the evidence suggests that immune dysregulation, as in the case of adult HIV populations, also has a significant association with neurocognitive performance in pediatric HIV populations

    Elucidating the Antimycobacterial Mechanism of Action of Decoquinate Derivative RMB041 Using Metabolomics

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of death from a single infectious agent worldwide. The high prevalence of this disease is mostly ascribed to the rapid development of drug resistance to the current anti-TB drugs, exacerbated by lack of patient adherence due to drug toxicity. The aforementioned highlights the urgent need for new anti-TB compounds with different antimycobacterial mechanisms of action to those currently being used. An N-alkyl quinolone; decoquinate derivative RMB041, has recently shown promising antimicrobial activity against Mtb, while also exhibiting low cytotoxicity and excellent pharmacokinetic characteristics. Its exact mechanism of action, however, is still unknown. Considering this, we used GCxGC-TOFMS and well described metabolomic approaches to analyze and compare the metabolic alterations of Mtb treated with decoquinate derivative RMB041 by comparison to non-treated Mtb controls. The most significantly altered pathways in Mtb treated with this drug include fatty acid metabolism, amino acid metabolism, glycerol metabolism, and the urea cycle. These changes support previous findings suggesting this drug acts primarily on the cell wall and secondarily on the DNA metabolism of Mtb. Additionally, we identified metabolic changes suggesting inhibition of protein synthesis and a state of dormancy

    The altered human serum metabolome induced by a marathon

    Get PDF
    Introduction - Endurance races have been associated with a substantial amount of adverse effects which could lead to chronic disease and long-term performance impairment. However, little is known about the holistic metabolic changes occurring within the serum metabolome of athletes after the completion of a marathon. Objectives - Considering this, the aim of this study was to better characterize the acute metabolic changes induced by a marathon. Methods - Using an untargeted two dimensional gas chromatography time-of-flight mass spectrometry metabolomics approach, pre- and post-marathon serum samples of 31 athletes were analyzed and compared to identify those metabolites varying the most after the marathon perturbation. Results - Principle component analysis of the comparative groups indicated natural differentiation due to variation in the total metabolite profiles. Elevated concentrations of carbohydrates, fatty acids, tricarboxylic acid cycle intermediates, ketones and reduced concentrations of amino acids indicated a metabolic shift between various fuel substrate systems. Additionally, elevated odd-chain fatty acids and α-hydroxy acids indicated the utilization of α-oxidation and autophagy as alternative energy-producing mechanisms. Adaptations in gut microbe-associated markers were also observed and correlated with the metabolic flexibility of the athlete. Conclusion - From these results it is evident that a marathon places immense strain on the energy-producing pathways of the athlete, leading to extensive protein degradation, oxidative stress, mammalian target of rapamycin complex 1 inhibition and autophagy. A better understanding of this metabolic shift could provide new insights for optimizing athletic performance, developing more efficient nutrition regimens and identify strategies to improve recovery

    Elucidating the antimycobacterial mechanism of action of ciprofloxacin using metabolomics

    Get PDF
    In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.https://www.mdpi.com/journal/microorganismsam2022Plant Production and Soil Scienc

    Elucidating the Antimycobacterial Mechanism of Action of Ciprofloxacin Using Metabolomics

    Get PDF
    Abstract: In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistanc

    Serum metabolome changes in relation to prothrombotic state induced by combined oral contraceptives with drospirenone and ethinylestradiol

    Get PDF
    The association between hypercoagulability and use of drospirenone (DRSP) and ethinylestradiol (EE) containing combined oral contraceptives (COCs) is an important clinical concern. We have previously reported that the two formulations of DRSP combined with EE (namely, DRSP/20EE and DRSP/30EE) bring about a prothrombotic state in hemostatic traits of female users. We report here the serum metabolomic changes in the same study cohort in relation to the attendant prothrombotic state induced by COC use, thus offering new insights on the underlying biochemical mechanisms contributing to the altered coagulatory profile with COC use. A total of 78 healthy women participated in this study and were grouped as follows: control group not using oral contraceptives (n = 25), DRSP/20EE group (n = 27), and DRSP/30EE group (n = 26). Untargeted metabolomics revealed changes in amino acid concentrations, particularly a decrease in glycine and an increase in both cysteine and lanthionine in the serum, accompanied by variations in oxidative stress markers in the COC users compared with the controls. Of importance, this study is the first to link specific amino acid variations, serum metabolites, and the oxidative metabolic profile with DRSP/EE use. These molecular changes could be linked to specific biophysical coagulatory alterations observed in the same individuals. These new findings lend evidence on the metabolomic substrates of the prothrombotic state associated with COC use in women and informs future personalized/precision medicine research. Moreover, we underscore the importance of an interdisciplinary approach to evaluate venous thrombotic risk associated with COC use.The National Research Foundation (NRF) (South Africa)https://home.liebertpub.com/publications/omics-a-journal-of-integrative-biology/432021-07-01am2021AnatomyPhysiolog

    Characterizing Marathon-Induced Metabolic Changes Using 1H-NMR Metabolomics

    Get PDF
    Although physical activity is a health-promoting, popular global pastime, regular engage-ment in strenuous exercises, such as long-distance endurance running races, has been associated with a variety of detrimental physiological and immunological health effects. The resulting altered physiological state has previously been associated with fluctuations in various key metabolite con-centrations; however, limited literature exists pertaining to the global/holistic metabolic changes that are induced by such. This investigation subsequently aims at elucidating the metabolic changes induced by a marathon by employing an untargeted proton nuclear magnetic resonance (1H-NMR) spectrometry metabolomics approach. A principal component analysis (PCA) plot revealed a natu-ral differentiation between pre- and post-marathon metabolic profiles of the 30-athlete cohort, where 17 metabolite fluctuations were deemed to be statistically significant. These included reduced concentrations of various amino acids (AA) along with elevated concentrations of ketone bodies, glycolysis, tricarboxylic acid (TCA) cycle, and AA catabolism intermediates. Moreover, elevated concentrations of creatinine and creatine in the post-marathon group supports previous findings of marathon-induced muscle damage. Collectively, the results of this investigation characterize the strenuous metabolic load induced by a marathon and the consequential regulation of main energy-producing pathways to accommodate this, and a better description of the cause of the physiological changes seen after the completion of a marathon

    Adjunct n-3 Long-Chain Polyunsaturated Fatty Acid Treatment in Tuberculosis Reduces Inflammation and Improves Anemia of Infection More in C3HeB/FeJ Mice With Low n-3 Fatty Acid Status Than Sufficient n-3 Fatty Acid Status

    Get PDF
    Populations at risk for tuberculosis (TB) may have a low n-3 polyunsaturated fatty acid (PUFA) status. Our research previously showed that post-infection supplementation of n-3 long-chain PUFA (LCPUFA) in TB without TB medication was beneficial in n-3 PUFA sufficient but not in low-status C3HeB/FeJ mice. In this study, we investigated the effect of n-3 LCPUFA adjunct to TB medication in TB mice with a low compared to a sufficient n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient (n- 3FAD) or n-3 PUFA-sufficient (n-3FAS) diet for 6 weeks before TB infection. Postinfection at 2 weeks, both groups were switched to an n-3 LCPUFA [eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA)] supplemented diet and euthanized at 4- and 14- days post-treatment. Iron and anemia status, bacterial loads, lung pathology, lung cytokines/chemokines, and lung lipid mediators were measured. Following 14 days of treatment, hemoglobin (Hb) was higher in the n-3FAD than the untreated n-3FAS group (p = 0.022), whereas the n-3FAS (drug) treated control and n-3FAS groups were not. Proinflammatory lung cytokines; interleukin-6 (IL-6) (p = 0.011), IL-1a (p = 0.039), MCP1 (p = 0.003), MIP1- a (p = 0.043), and RANTES (p = 0.034); were lower, and the antiinflammatory cytokine IL-4 (p=0.002) and growth factor GMCSF (p=0.007) were higher in the n-3FAD compared with the n-3FAS mice after 14 days. These results suggest that n-3 LCPUFA therapy in TB-infected mice, in combination with TB medication, may improve anemia of infection more in low n-3 fatty acid status than sufficient status mice. Furthermore, the low n-3 fatty acid status TB mice supplemented with n-3 LCPUFA showed comparatively lower cytokine-mediated inflammation despite presenting with lower pro-resolving lipid mediators
    • …
    corecore