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Abstract: Although physical activity is a health-promoting, popular global pastime, regular engage-

ment in strenuous exercises, such as long-distance endurance running races, has been associated 

with a variety of detrimental physiological and immunological health effects. The resulting altered 

physiological state has previously been associated with fluctuations in various key metabolite con-

centrations; however, limited literature exists pertaining to the global/holistic metabolic changes 

that are induced by such. This investigation subsequently aims at elucidating the metabolic changes 

induced by a marathon by employing an untargeted proton nuclear magnetic resonance (1H-NMR) 

spectrometry metabolomics approach. A principal component analysis (PCA) plot revealed a natu-

ral differentiation between pre- and post-marathon metabolic profiles of the 30-athlete cohort, 

where 17 metabolite fluctuations were deemed to be statistically significant. These included reduced 

concentrations of various amino acids (AA) along with elevated concentrations of ketone bodies, 

glycolysis, tricarboxylic acid (TCA) cycle, and AA catabolism intermediates. Moreover, elevated 

concentrations of creatinine and creatine in the post-marathon group supports previous findings of 

marathon-induced muscle damage. Collectively, the results of this investigation characterize the 

strenuous metabolic load induced by a marathon and the consequential regulation of main energy-

producing pathways to accommodate this, and a better description of the cause of the physiological 

changes seen after the completion of a marathon.  

Keywords: endurance races; marathon; metabolites; untargeted metabolomics; 1H-NMR spectrom-

etry; serum metabolome 

 

1. Introduction 

The year 2021 marks the 125th anniversary of the first marathon run during the 1896 

Summer Olympics in Greece. The popularity of this event sparked the conception of long-

distance (≥5 km) endurance running races, generally categorized as half-marathons (21.1 

km), marathons (42.2 km) and ultra-marathons (≥42.2 km) [1]. Not only has participation 

in marathons become increasingly common, but it has also become affiliated with the 
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many health benefits that are associated with aerobic exercise [2]. The most notable of 

which is the lower prevalence of cardiovascular disease [3], elevated cognitive health [4], 

and increases in skeletal muscle mitochondrial volume as well as subsequent increases in 

muscle oxidative capacity [5]. There is, however, a large disparity between the energy 

expenditure and bodily demands associated with marathon running in comparison to 

most other aerobic exercises. As such, regular participation in these endurance running 

events have been found to induce numerous potentially deleterious immunological and 

physiological health effects. Some of these immunological effects include acute pro- and 

anti-inflammatory responses [6], damage to bronchial epithelial cells [7], a perturbed mu-

cosal immune system, and higher susceptibility to symptoms of upper respiratory tract 

infections [8]. On a physiological level, short-term occurrences of muscle damage [9] and 

medial tibial stress syndrome [10] are common for the average marathon participant, 

while more acute effects such as an increased risk for myocardial fibrosis [11], deleterious 

cardiac structural changes [12], as well as acute liver and renal damage [13] have been 

reported for extreme/elite veteran marathon athletes. 

Although these immunological and physiological effects have been well character-

ized, there is limited literature on the impact of these races on metabolite fluctuations 

(metabolome) of marathon runners using untargeted metabolomics. Metabolomics aims 

to comprehensively detect, identify, and quantify fluctuations in metabolite (<1,500 Da 

organic and inorganic chemical compounds) concentrations in a biological system in re-

sponse to a perturbation (disease, environmental factors, drug-intake, lifestyle, dietary, 

etc.), as a means of providing information regarding the altered physical state [14–16].  

Previous investigations [17–20] that have employed targeted and/or semi-targeted 

metabolomics approaches have provided credible information on the metabolic effects of 

strenuous exercises. In short, energy production takes place in a hierarchical manner dur-

ing physical activity [21], where the contribution of each metabolic pathway is determined 

by factors such as the overall intensity, duration, and frequency of exercise [22]. The var-

ious metabolic processes at play include: (1) substrate-level phosphorylation via the phos-

phocreatine system [23], providing sufficient ATP for only a few seconds of running ac-

tivity [18]; (2) anaerobic glycolysis and homolactic fermentation of pyruvic acid, produc-

ing sufficient ATP for an additional few minutes of running activity [22]; and (3) aerobic 

catabolism of dietary substrates by means of oxidative phosphorylation, which is of high 

energetic value to endurance athletes, since it is able to supply sufficient ATP to support 

several hours of exercise, provided sufficient nutrient store availability [22]. Carbohy-

drates are widely recognized as the primary aerobic ATP source utilized during endur-

ance running events [18,24,25], although the capacity of aerobic glycolysis can be limited 

during continuous running activity [26]. Insufficient free glucose and glycogen stores re-

portedly lead to a gluconeogenic influx, reduced insulin secretion, and an elevated gluca-

gon/insulin ratio, subsequently activating alternative energy-producing pathways such as 

lipolysis and protein catabolism [25]. 

According to Hawley and Leckey [27], the aerobic carbohydrate utilization rate is 

reduced, while an upregulated fatty acid oxidation is observed in skeletal muscles during 

endurance exercise [28]. This is supported by various previous metabolomics studies 

[18,20,24,29] that observed elevated concentrations of fatty acids, glycerol, acyl-carnitines, 

and ketone bodies, concurrent with upregulated lipolysis and ketogenesis activity. More-

over, saturation of beta-oxidation (elevated 3-hydroxy acids) and subsequent upregula-

tion of omega-oxidation (elevated dicarboxylic acids), which is normally considered to be 

a minor pathway capable of compensating for incomplete beta-oxidation, has been re-

ported [24,25] following a marathon. In addition to the utilization of lipids as an alterna-

tive fuel substrate, a general reduction in amino acids (AA) and elevation in their associ-

ated catabolism intermediates has also been observed in previous metabolomics investi-

gations [19,20,24], further indicating the utilization of proteins/AA as yet another alterna-

tive fuel substrate.  
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Although previous studies provide credible information pertaining to endurance ex-

ercise-induced metabolic changes, most are based on studies done using targeted and/or 

semi-targeted approaches (biased) that were performed in controlled environments (cy-

cling, treadmill, rowing activities) [30]. As such, the current study is aimed at investigating 

the effects of a marathon (42.2 km) on the serum metabolome of 30 recreational marathon 

runners by using an untargeted proton nuclear magnetic resonance (1H-NMR) metabo-

lomics approach. Considering this, we aim to not only confirm the previously proposed 

marathon-induced metabolic changes, but to possibly identify additionally affected met-

abolic pathways, allowing for a more holistic view of the global metabolome change in-

duced by a marathon. 

2. Results 

The principal component analysis (PCA) plot (Figure 1) shows clear separation of the 

pre-marathon and post-marathon metabolome data. Upon employing the first round of 

the multi-statistical approaches, 67 of the original 132 1H-NMR spectral bins were deemed 

significant, while the second round identified 17 statistically significant metabolites asso-

ciated with these bins. These metabolites are listed in Table 1, and fluctuations are dis-

cussed in detail thereafter (associated PCA loading plot is illustrated in Figure S1). 

 

Figure 1. Principal component analysis (PCA) plot illustrating the natural differentiation of the pre-

marathon (red circles) and post-marathon (green triangles) serum metabolic profiles of the 30 mar-

athon participants. 

Table 1. Statistically significant marathon-induced metabolite changes. 

Metabolite (PubChem ID) Pre-Marathon Post-Marathon Pre- vs. Post-Marathon 
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Average Concentration in µM (Standard Deviation) p-Value (<0.05) 
d-Value 

(≥0.5) 

3-Hydroxybutyric acid (441) c 56.7 (32.4) 424.8 (268.8) 1.0 × 10−12 3.7 

3-Hydroxyisobutyric acid (87) a * 19.4 (5.9) 38.5 (9.4) 9.1 × 10−10 1.9 

3-Methyl-2-oxovaleric acid (47) b 35.7 (16.3) 70.5 (18.2) 7.7 × 10−8 1.4 

Acetoacetic acid (96) b 21.3 (6.2) 55.0 (26.2) 2.4 × 10−8 2.5 

Acetone (180) b 6.7 (2.1) 17.2 (11.2) 7.7 × 10−7 2.3 

Citric acid (311) c 137.5 (33.6) 221.9 (55.0) 2.9 × 10−10 2.0 

Creatine (586) b 67.9 (21.9) 100.2 (51.8) 9.7 × 10−5 1.1 

Creatinine (588) b 50.7 (9.5) 70.1 (18.5) 2.5 × 10−7 1.3 

Glucose (5793) 1426.1 (382.1) 1927.3 (469.6) 1.4 × 10−5 1.1 

Histamine (774) a * 93.9 (26.6) 68.9 (26.8) 2.5 × 10−3 1.5 

Isoleucine (6306) 72.3 (20.4) 49.5 (10.9) 1.7 × 10−8 1.1 

Lactic acid (612) 2472.0 (851.5) 4423.3 (1182.7) 2.0 × 10−8 1.9 

Leucine (6106) 159.0 (36.8) 119.0 (22.0) 1.7 × 10−8 1.2 

Lysine (5962) 161.4 (42.0) 127.6 (30.4) 1.4 × 10−5 0.9 

Proline (145742) c 284.1 (73.3) 219.2 (59.0) 5.8 × 10−7 1.0 

Pyruvic acid (1060) b 60.9 (28.1) 112.5 (38.5) 6.3 × 10−8 1.4 

Valine (6287) 267.0 (53.3) 200.3 (35.1) 1.8 × 10−10 1.3 
a No JRES or COSY confirmation; b JRES 2D confirmation only; c COSY 2D confirmation only; * level 2 identification. 

3. Discussion 

The majority of the metabolites listed in Table 1 are indicative of changes to the main 

energy-producing pathways, including the phosphagen system, anaerobic and aerobic 

glycolysis, the tricarboxylic acid (TCA cycle), ketogenesis, and amino acid oxidation (il-

lustrated in Figure 2). 

Anaerobic glycolysis typically involves the conversion of accumulating pyruvic acid 

to lactic acid, via lactic acid dehydrogenase, accepting NADH as a coenzyme, and pro-

ducing NAD+ [31]. This is concurrent with the elevated post-marathon lactic acid and py-

ruvic acid observed in the current investigation (Figure 2) and is further supported by 

previous studies [18,25]. Although this mechanism provides a more rapid method of en-

ergy production than aerobic glycolysis and aids in the maintenance of the NAD+/NADH 

ratios [31], its performance is restricted due to the resulting lactic acidosis [32], hence co-

ercing the transition to aerobic glycolysis and the catabolism of alternative fuel substrates 

[22]. 

It is well known that carbohydrates are preferentially oxidized by the body during 

endurance-type exercises [23], reportedly leading to glucose and glycogen store “deple-

tion” within approximately 90 min after the start of endurance running (at > 75% of max-

imum oxygen uptake) [26]. However, elevated serum glucose was observed immediately 

post-marathon in this investigation (Figure 2). This is supported by the studies conducted 

by Stander et al. [25] and Lewis et al. [18] who reported elevated post-marathon serum 

glucose, as well as an elevation in the gluconeogenesis-associated metabolites. A plausible 

explanation for this includes the initial depletion of free glucose as well as intramuscular 

and liver glycogen stores, resulting in downregulated insulin secretion, upregulated glu-

coneogenesis, and an elevated glucagon/insulin ratio [25]. This phenomenon is thought to 

be regulated by a variety of factors, including altered hormone secretion (glucocorticoids) 

in response to the stress signals caused by the hypoxic state and the strenuous energy 

demands induced during the endurance race [33]. Cortisol is one of the major glucocorti-

coids associated with the latter, and results in the translocation of glucose transporters to 

the cell membrane, subsequently inhibiting glucose uptake during fasting and/or exercis-

ing and eventuating elevated blood glucose levels [34]. 
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Figure 2. A schematic description of the marathon-induced metabolic changes, showing increased (↑) and decreased (↓) concentrations of significantly altered metabolites in the post-

marathon samples (in bold text) are indicated relative to the pre-marathon values. ATP adenosine triphosphate, ADP adenosine diphosphate, AMP adenosine monophosphate, NAD+ 

nicotinamide adenine dinucleotide, NADH reduced nicotinamide adenine dinucleotide, NADP+ nicotinamide adenine dinucleotide phosphate, NADPH reduced nicotinamide adenine 

dinucleotide phosphate, Pi inorganic phosphate, CoA coenzyme A, FAD flavin adenine dinucleotide, FADH2 reduced flavin adenine dinucleotide, GTP guanosine triphosphate, GDP 

guanosine diphosphate. 
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Endurance-induced adaptations (generally only reported for highly trained aerobic 

athletes) of the skeletal muscles includes a slower utilization of carbohydrates and an up-

regulated lipid metabolism [27]. Although the current study cohort includes both amateur 

and well-trained marathon participants, no significant differences were observed when 

comparing the respective metabolic profiles based on previous endurance running expe-

rience. Lipids are also catabolized (especially 60–90 min into such endurance events) via 

β-oxidation, contributing to the production of acetyl-CoA [28], and initially resulting in 

an upregulated channeling of the latter into the TCA-cycle. This acetyl-CoA influx may 

account for the elevated serum concentration of citric acid observed during the current 

(Figure 2) and previous studies [18,25]. Additionally, the high energy demands and asso-

ciated imbalanced redox state induced by participation in such activities [35] may cause 

an upregulation in citric acid synthase and pyruvic acid dehydrogenase activity, as previ-

ously observed by McKenzie et al. [36], in an attempt to produce the much-needed 

NADH/FADH2 and, ultimately, ATP via the electron transport chain. However, the con-

tinuous influx of acetyl-CoA from the various energy-producing pathways, accompanied 

by the aforementioned imbalanced redox state, may exceed the mitochondrial oxidative 

capacity, eventuating in the activation of ketogenesis [31,37]. The latter is demonstrated 

in this investigation by the elevated concentrations of 3-hydroxybutyric acid, acetone, and 

acetoacetic acid observed in the post-marathon serum samples (Figure 2). 

In accordance with previous literature [38], AA catabolism was activated as an alter-

native means of producing energy during the marathon (Figure 2). This is supported by a 

reduction in concentrations of AAs (leucine, isoleucine, valine, lysine, and proline) and 

the elevation of the various observed serum AA catabolism intermediates (3-methyl-2-

oxovaleric acid and 3-hydroxyisobutyric acid). Additionally, the reduced concentrations 

of serum histamine (decarboxylated form of histidine) observed in the post-marathon 

samples (Figure 2) may be ascribed to the preferred catabolism of histidine for ATP syn-

thesis via the TCA cycle, rather than to be decarboxylated to histamine [39]. Lastly, con-

sidering the role of histamine during acute inflammatory responses, reduced post-mara-

thon histamine may additionally be ascribed to an immune suppression experienced dur-

ing the “open window effect” directly after the marathon [39,40]. 

Although protein catabolism normally only contributes to supplying a small amount 

of the total energy requirements during a marathon, branched-chain amino acids (BCAA) 

are preferentially oxidized [25], a situation triggered by, amongst others, a reduced 

ATP:ADP ratio, acidosis, and the “depletion” of muscle glycogen stores [36]. Furthermore, 

the reduced post-marathon serum concentrations of leucine are known to inhibit gluta-

mine transport into the cells, subsequently inhibiting mTORC1 and resulting in autoph-

agy [25] as the body’s last resort to find the necessary energy-producing substrates to 

comply with the massive energy demands required to complete such an event [41]. 

Lastly, the elevated serum levels of creatine and creatinine, are most likely indicative 

of muscle damage [42], or perhaps also to a lesser extent, a declining kidney function [43], 

or myocardial cell injury [44], all of which have been previously proposed to potentially 

occur during strenuous endurance exercise. 

In conclusion, the current study was aimed at investigating marathon-induced (42.2 

km) metabolite shift using an untargeted 1H-NMR metabolomics approach. The afore-

mentioned metabolic changes to aerobic and anaerobic glycolysis, ketogenesis, AA catab-

olism (in particular, BCAAs) and the TCA cycle, indicated the extent to which the body 

needs to adapt in order to comply with the energy demands required for the completion 

of a marathon. Increases in all three endogenous ketone bodies and decreases in all three 

BCAAs reflect a high reliance on their associated metabolic pathways for energy produc-

tion, suggesting a possible target for the development of athletic performance-enhancing 

strategies. The decreased post-marathon histamine concentration has not been reported 

before and may suggest an alternative source of energy production during a marathon 

run. Furthermore, the presence of creatinine and creatine in post-marathon samples pri-

marily supports the occurrence of exercise-induced muscle damage. The next step would 
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be to use these findings towards more effective recovery and athletic performance-en-

hancing strategies, which target those specific energy-producing metabolic pathways 

shown to be drastically altered in this study. 

One of the most apparent confounding factors of this investigation, as in the case of 

all human-based studies, is the unavoidable presence of inter-individual variability. In an 

attempt to compensate for the latter, the study design pertinently included paired 

measures of the participants, thus allowing each participant to serve as their own control. 

Nonetheless, inter-individual variation, as well as the uncontrolled environmental setting 

of the study, allows for a higher level of robustness of the findings, considering that the 

true nature of the marathon-perturbation is represented. Future investigations may con-

sider using larger sample cohorts to further support the results obtained here, and to re-

peat the current study in a variety of alternative geological locations with differences in 

climate, humidity, altitude, and atmospheric pressure to elucidate the underlying causa-

tive relationship between environmental factors and metabolic adaptations. Results gen-

erated from this investigation provide a basis for further, more targeted and/or semi-tar-

geted metabolomics approaches that may aim to correlate the metabolite fluctuations, per-

haps with varying running distances, speed, and athlete experience. 

4. Materials and Methods 

4.1. Participants 

Volunteers provided written informed consent prior to participation. Participant eli-

gibility was assessed by completing a health screening questionnaire, in which individu-

als with food allergies, cardiovascular complications, musculoskeletal disorders/injuries, 

and those receiving anti-inflammatory treatment were excluded from the study. Female 

athletes were required to complete a menstrual cycle questionnaire, and all participants 

were instructed to record their dietary intake from 24 h preceding pre-marathon sam-

pling, up to 48 h post-marathon. Based upon these exclusion criteria, 30 marathon runners 

were included in this study. A summary of participant characteristics is provided in Table 

2. Ethical approval was obtained from the North-West University Health Research Ethics 

Committee (ethics number: NWU-00163-21-A1). 

Table 2. Participant demographic information. 

Participant Characteristics Average ± Standard Deviation 

Age (years) 41 ± 12 

Gender (M/F) 18/12 

Height (m) 1.7 ± 0.1 

Mass change (kg) −1.3 ± 1.0 

Experience (years) 9.6 ± 8.4 

Finishing time (hh:mm:ss) 04:16:13 ± 00:47:01 

4.2. Druridge Bay Marathon 

The marathon took place in 2016 and entailed 4 laps around the Druridge Bay coun-

try park, located on the Northumberland coast (Morpeth, UK). The route was mainly flat 

and included a combination of paved and grassy terrain, as well as approximately 6.4 km 

(1.6 km per lap) of soft sand on the coastline. The race started at 09:00, at which time the 

ambient temperature was 3.8 °C, wind speed 9 km h−1, humidity 82%, and barometric 

pressure 1,013 hPa. At the end of the race (approximately 13:30) the ambient temperature 

and wind speed had increased to 8.5 °C and 14 km h−1, respectively, while the humidity 

decreased to 62%. Throughout the race, the weather remained mostly cloudy, with occa-

sional sunshine. 
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4.3. Sample Collection and Storage 

The current investigation forms part of a larger multidisciplinary collaboration study 

wherein physiological, immunological [45], and metabolic [25,46] analyses on subgroups 

of the current sample cohort have been performed and may be referred to for further in-

formation. Blood samples from 30 marathon runners were collected via antecubital fossa 

venesection of the basilica vein, before (pre-marathon) and immediately after (post-mar-

athon) completion of a marathon run. In the week preceding the marathon, runners were 

required to be in a hydrated yet fasted state for 10 mL pre-marathon blood sample in the 

laboratory. Post-marathon samples were taken in the field at the finish line of the mara-

thon within 1 h post-race before being placed on ice and transported to the Faculty of 

Health and Life Sciences, Department of Sport, Exercise, and Rehabilitation at Northum-

bria University in Newcastle, United Kingdom. Blood samples were then allowed to co-

agulate for 30 min before being centrifuged at 3,000× g for 10 min. The supernatant/serum 

was extracted and immediately frozen at −80 °C, before being transported (on dry ice) to 

the North-West University, Human Metabolomics: Laboratory of Infectious and Acquired 

Diseases, South Africa. Samples were kept at −80 °C until metabolomics analyses were 

performed. 

4.4. 1H-NMR Serum Buffer Solution 

A 1.5 M buffer solution was prepared by dissolving 20.4 g potassium dihydrogen 

phosphate (KH2PO4) in 80 mL of deuterated water (D2O). Hereafter, 100 mg of trimethylsi-

lylpropionic acid (TSP; internal standard) and 13 mg of sodium azide (NaN3) were dis-

solved in 6–10 mL of D2O. These two solutions were then combined and vortexed before 

pH adjustment to 7.4 via potassium hydroxide (KOH) pellets addition. Finally, the solu-

tion was transferred to a volumetric flask and the volume was adjusted to 100 mL with 

D2O. 

4.5. Sample Preparation and Randomization 

Prior to sample preparation, all samples were randomized and equally divided into 

3 batches. Serum samples contain macromolecules, such as lipids and proteins, that may 

lead to spectral interference and poor spectral baselines, subsequently resulting in inaccu-

rate identification and quantification of metabolites, if not removed. As such, all batched 

samples, including the pooled quality control (QC) samples (containing 50 µL of each test 

sample) were filtered using pre-rinsed (thrice with HPLC-grade H2O via centrifugation at 

6,000× g for 10 min) centrifugal filter units (10,000 Da filter pore size). A miniaturized 1H-

NMR method, adapted from Mason et al. [47], was employed due to limited sample vol-

umes. Briefly, 100 μL of each serum sample was pipetted onto the pre-rinsed centrifugal 

filters and centrifuged at 6,000× g for 20 min. Hereafter, 6 μL of buffer solution and 54 μL 

of sample filtrate (10:90% buffer:sample ratio) were dispensed into 2 mm 1H-NMR tubes 

(outside diameter 2.0 mm, inside diameter 1.6 mm, length 100 mm) by using an eVol® 

(Supelco, St. Louis, US) NMR automated digital syringe system (100 μL syringe and 180 

mm long bevel-tipped needle) with a pre-loaded/programmed pipetting sequence. This 

mixture was homogenized by first aspirating, then dispensing the 60 μL solution back 

into the 2 mm 1H-NMR tubes. The syringe was washed three times between each sample 

transfer with distilled water. Employing the MATCH system (Bruker, Rheinstetten, Ger-

many), samples were loaded onto a SampleXpress autosampler (Bruker, Rheinstetten, 

Germany) based on previous randomization, with QC samples set to be analyzed at the 

beginning, middle, and end of each batch for quality assurance purposes (Figures S2 and 

S3). 

4.6. 1H-NMR Analysis 

1H-NMR spectroscopy is a highly specific analytical platform with the capability to 

elucidate complex structural and conformational data from a wide variety of chemical 
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classes [48]. The prepared serum samples, along with appropriate QC samples, were an-

alyzed on a Bruker Avance III HD 500 MHz NMR spectrometer, equipped with a 5 mm 

triple-resonance inverse (TXI) probe head, which was kept at a constant temperature of 

310 K (37 °C). In order to produce reproducible data, the following experimental parame-

ter adjustments were made by utilizing Topspin (version 3.5, Bruker, Rheinstetten, Ger-

many) prior to each sample analyzed: (1) shimming to the TSP signal was applied to cor-

rect for magnetic field inhomogeneity caused by variations of the applied magnetic field, 

as a result of imperfections in the main magnet or due to the presence of interfering com-

pounds in the sample itself [49]; (2) the signal was automatically locked to a pre-defined 

D2O reference signal present in each sample in order to compensate for magnetic field 

drift [50]; and (3) the probe head was tuned to 500.133 MHz and the pulse was calibrated 

to ensure a resonant frequency at 90°. Each scan (n = 128) was subjected to an excitation 

pulse of 90° for 8 μs followed by a 4 s relaxation delay. Spectral width for the 1H-NMR 

spectra was 6,000 Hz (12.0 ppm). 

4.7. Data Processing and Clean-Up 

Data pre-processing steps were automatically completed by Bruker Topspin (version 

3.5) software and included: (1) Fourier transformation of the raw free induction decay 

signal to readable spectral peaks; (2) baseline phasing and correction; (3) TSP calibration 

to exactly 0.00 ppm; and (4) pre-saturation/suppression of H2O resonance at 4.72 ppm by 

single-frequency irradiation during the 4 s relaxation delay with 8 µs 90° excitation pulse, 

using NOESY-presat pulse sequence program. Moreover, spectral resolution was manu-

ally checked in order to ensure that shimming was done correctly by assessing that the 

width of the TSP peak, at half the height of the peak, was <1 Hz. 

Further data processing steps were conducted using  AMIX (version 3.9.14, Bruker, 

Rheinstetten, Germany), where the dataset was normalized relative to the internal stand-

ard (TSP), and the spectral data quantified across 132 bins (variable-sized binning). The 

advantage of binning used here was that no spectral regions of noise were included in the 

statistical analyses as noise can have a negative impact on principal component analysis 

[51]. Data clean-up steps included log-transformation using natural shift log transfor-

mation [52] (heteroscedasticity correction for non-gaussian variable distribution), as well 

as auto-scaling to align and correlate all variables [53], all of which were executed utilizing 

MetaboAnalyst (version 5.0, Xia research group, Saint Anne de Bellevue, Canada) [54]. 

4.8. Bins/Metabolite Marker Selection and Statistical Analysis 

Following data processing, the binned data was uploaded onto the MetaboAnalyst 

(version 5.0) software. Untargeted 1H-NMR metabolite selection proceeded in a biphasic 

manner. The first phase consisted of untargeted/unbiased statistical analysis to identify 

the bins significant pertaining to the aim of this investigation, while the more targeted, 

second phase identified the metabolites associated with the bins selected in phase one 

(multiple bins could be representative of one compound) that are significant to the aim of 

the investigation [52]. Although the multi-statistical approach employed included both 

univariate and multivariate methods, metabolites/bins were selected based on univariate 

methods only. 

Univariate analyses included an independent effect size (Glass’s Δ effect size calcu-

lation as described by Ialongo [55]) and a paired t-test (corrected for multiple testing by 

the Benjamini-Hochburg procedure [56]), which was performed using Excel 2016 (Mi-

crosoft 365, version 2108) and MetaboAnalyst (version 5.0) [54], respectively. Addition-

ally, multivariate analyses included a PCA, indicating whether a natural differentiation 

occurred between comparative groups. 

In the case of the preliminary untargeted statistical bins selection (phase one), 132 

bins were subjected to the basis of a large effect size (d-value ≥ 0.8) and an adjusted p-value 

cut-off lower than 0.05. After the first round, 67 bins were identified as statistically 
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significant, and their respective peaks were identified using pure chemical compounds. 
1H-NMR assignments are presented in Table 3. Following identification, only metabolites 

with a d-value ≥ 0.5 and p-value ≤ 0.05 were selected for interpretation during the second 

phase of statistical analyses. Finally, this allowed for the identification of 17 statistically 

significant metabolite markers listed in Table 1. 

Table 3. 1H-NMR assignments of identified metabolites. 

Peak Metabolite Chemical Shift (ppm) Protons (n) Multiplicity Chemical Moiety 

1 3-Hydroxybutyric acid c 1.21 3 d CH3 

2 3-Hydroxyisobutyric acid a * 1.08 3 d CH3 

3 3-Methyl-2-oxovaleric acid b 1.10 3 d CH3 

4 Acetoacetic acid b 2.28 3 s CH3 

5 Acetone b 2.24 6 s CH3 

6 Citric acid c 2.60 2 d CH2 

7 Creatine b 3.93 2 s CH2 

8 Creatinine b 4.06 2 s CH2 

9 α-Glucose 5.24 1 d CH 

10 β-Glucose 4.66 1 d CH 

11 Histamine a * 7.06 1 s CH 

12 Isoleucine 1.01 3 d CH3 

13 Lactic acid 1.33 3 d CH3 

14 Leucine 0.96 6 dd (CH3)2 

15 Lysine 3.02 2 t CH2 

16 Proline 2.01 2 m CH2 

17 Pyruvic acid b 2.38 3 s CH3 

18 Valine 1.04 3 d CH3 

Peak numbers correspond to the labels used in Figure S4. a No JRES or COSY confirmation; b JRES 2D confirmation only; 
c COSY 2D confirmation only; * level 2 identification; s singlet; d doublet; dd double doublet; t triplet; m multiplet. 

4.9. 2D-NMR Analysis and Identification 

Homonuclear correlation spectroscopy (COSY) and homonuclear J-resolved spec-

troscopy (JRES) were used to produce two-dimensional NMR spectra for high confidence 

metabolite-identity confirmational purposes by increasing metabolite specificity through 

deconvolution techniques [57]. Two-dimensional COSY and JRES spectra were recorded 

with a spectral width of 8,000 Hz in both dimensions, at 16 scans per increment, a recycle 

delay of 2 s, and a pulse of 8.5 µs (Figures S5–S9). Correlations between the acquired 2D-

NMR spectra and 1H-NMR spectra, during which identical experimental conditions were 

followed, allows for level 1 confidence identification of non-novel metabolites [58]. 

4.10. Absolute Quantification 

Following metabolite identification and confirmation through 2D COSY and/or JRES 

NMR analyses (Figures S5–S9), quantification was performed on corresponding peaks 

(Table 3), which had minimal overlaps and good signal to noise ratios (Figure S4). A fea-

ture unique to 1H-NMR analysis is the ability of the platform to produce spectra wherein 

the peak areas are directly proportional to the number of protons (nuclei) responsible for 

the peak. As a result, 1H-NMR-based quantification processes do not require the construc-

tion of a calibration curve based on pure compounds, and metabolites can be quantified 

provided that the signal area per proton is known [52]. This was achieved by the addition 

of a known concentration (0.5805 mM) of internal standard (TSP) to each sample. The sig-

nal area per proton was calculated by dividing the peak integral of TSP by the number of 

protons present in the molecule (H+ = 9). Identified metabolites were subjected to an iden-

tical procedure before equating each integral relative to TSP. By multiplying this value 
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with the known concentration of TSP, the identified metabolites could be quantified in an 

absolute manner. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

PCA loading plot of all identified metabolites significantly influenced by a marathon perturbation, 

Figure S2: PCA plot indicating the clustering of QC samples, demonstrating the absence of a batch 

effect, Figure S3: Inter-batch and intra-batch repeatability of all 1H-NMR bins in QC samples prior 

to statistical analyses. FDA suggested 20% CV cut-off related to, 79% (intra-batch repeatability) and 

86% (inter-batch repeatability) of all bins, while selecting a 50% CV cut-off, 93% (intra-batch repeat-

ability) and 96% (inter-batch repeatability) of all bins fell within range, Figure S4: 1D 1H-NMR spec-

trum of QC sample with important metabolites identified. 1 = 3-Hydroxybutyric acid (1.21d, J = 6.2 

Hz), 2 = 3-Hydroxyisobutyric acid (1.08d, J = 7.0 Hz), 3 = 3-Methyl-2-oxovaleric acid (0.90t, J = 7.4 

Hz; 1.10d, J = 7.0 Hz), 4 = Acetoacetic acid (2.28s), 5 = Acetone (2.24s), 6 = Citric acid (2.60AB, J = 15.3 

Hz), Creatine (3.04s; 3.93s), Creatinine (3.05s; 4.06s), 9 = α-Glucose (5.24d, J = 3.7 Hz), 10 = β-Glucose 

(4.66d, 7.9 Hz), 11 = Histamine (7.06s, 7.79d), 12 = Isoleucine (0.94t, J = 7.4 Hz; 1.01d, J = 7.0 Hz), 13 = 

Lactic acid (1.33d, J = 7.0 Hz; 4.12q, J = 6.9 Hz), 14 = Leucine (0.96dd, J = 5.9 Hz), 15 = Lysine (1.73m; 

1.91m; 3.02t, J = 7.6 Hz), 16 = Proline (2.01m), 17 = Pyruvic acid (2.38s), 18 = Valine (0.99d, J = 7.0 Hz; 

1.04d, J = 7.0 Hz)., Figure S5: 1D 1H-NMR and 2D 1H-1H JRES NMR confirmation of metabolites 

using pure compound library. Metabolites: 3-hydroxybutyric acid, 3-hydroxyisobutyric acid, 3-me-

thyl-2-oxovaleric acid, isoleucine, valine, and leucine, Figure S6: 1D 1H-NMR and 2D 1H-1H JRES 

NMR confirmation of metabolites using pure compound library. Metabolites: glucose and lactic 

acid, Figure S7: 1D 1H-NMR and 2D 1H-1H JRES NMR confirmation of metabolites using pure com-

pound library. Metabolites: creatinine and creatine, Figure S8: 1D 1H-NMR and 2D 1H-1H JRES NMR 

confirmation of metabolites using pure compound library. Metabolites: lysine, proline, pyruvic acid, 

acetone, and acetoacetic acid, Figure S9: 2D 1H-1H COSY NMR confirmation of metabolites using 

pure compound library. Metabolites: 3-hydroxybutyric acid, citric acid, glucose, isoleucine, leucine, 

valine, lysine, proline, and lactic acid. 
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