68 research outputs found

    Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery

    Get PDF
    Intraoperative segmentation and tracking of minimally invasive instruments is a prerequisite for computer- and robotic-assisted surgery. Since additional hardware like tracking systems or the robot encoders are cumbersome and lack accuracy, surgical vision is evolving as promising techniques to segment and track the instruments using only the endoscopic images. However, what is missing so far are common image data sets for consistent evaluation and benchmarking of algorithms against each other. The paper presents a comparative validation study of different vision-based methods for instrument segmentation and tracking in the context of robotic as well as conventional laparoscopic surgery. The contribution of the paper is twofold: we introduce a comprehensive validation data set that was provided to the study participants and present the results of the comparative validation study. Based on the results of the validation study, we arrive at the conclusion that modern deep learning approaches outperform other methods in instrument segmentation tasks, but the results are still not perfect. Furthermore, we show that merging results from different methods actually significantly increases accuracy in comparison to the best stand-alone method. On the other hand, the results of the instrument tracking task show that this is still an open challenge, especially during challenging scenarios in conventional laparoscopic surgery

    Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma

    Get PDF
    \ua9 2024 National Academy of Sciences. All rights reserved.Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community

    A Reliable and Rapid Language Tool for the Diagnosis, Classification, and Follow-Up of Primary Progressive Aphasia Variants

    Get PDF
    International audienceBackground: Primary progressive aphasias (PPA) have been investigated by clinical, therapeutic, and fundamental research but examiner-consistent language tests for reliable reproducible diagnosis and follow-up are lacking. Methods: We developed and evaluated a rapid language test for PPA ("PARIS") assessing its inter-examiner consistency, its power to detect and classify PPA, and its capacity to identify language decline after a follow-up of 9 months. To explore the reliability and specificity/sensitivity of the test it was applied to PPA patients (N = 36), typical amnesic Alzheimer's disease (AD) patients (N = 24) and healthy controls (N = 35), while comparing it to two rapid examiner-consistent language tests used in stroke-induced aphasia ("LAST", "ART"). Results: The application duration of the "PARIS" was ∼10 min and its inter-rater consistency was of 88%. The three tests distinguished healthy controls from AD and PPA patients but only the "PARIS" reliably separated PPA from AD and allowed for classifying the two most frequent PPA variants: semantic and logopenic PPA. Compared to the "LAST" and "ART," the "PARIS" also had the highest sensitivity for detecting language decline. Conclusions: The "PARIS" is an efficient, rapid, and highly examiner-consistent language test for the diagnosis, classification, and follow-up of frequent PPA variants. It might also be a valuable tool for providing end-points in future therapeutic trials on PPA and other neurodegenerative diseases affecting language processing

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    Nancy-salon 1888 / Henri Teichmann ; avec une préface de M. Maurice Barrès

    No full text
    Appartient à l’ensemble documentaire : Lorr1Avec mode text
    corecore