772 research outputs found

    Study on synthetic evaluation of lakes water quality improvement policies in Wuhan City in China

    Full text link
    Wuhan City is located in the central part of China, which is an import foothold of the transportation, manufacturing industry, commerce and education in China. Chinese government appointed Wuhan City as a national pilot reform area of resource-saving and environmentally friendly society at the end of 2007. There is a great deal of fresh water resources in Wuhan City, and Wuhan City is known as 'the city with 100 lakes'. However, about 60% of the lake water resources have became seriously polluted in Wuhan City. The most important reason for water degradation of Wuhan City is the imbalance between rapid economic development and the environment load capacity. In this study, we raised synthetic policies to reduce amount of lake water pollutants and realize the harmonious development between regional economy and water environment. In this paper, we focused on three contamination materials (COD, T-N and T-P) and constructed a model from environmental load, socio-economy and water quality improvement policies. We performed optimization simulation based on linear programming to maximize gross regional production (GRP) and reduce environmental load, and finally we suggested proper policies to improve water quality in this area

    The Formation History of Subhalos and the Evolution of Satellite Galaxies

    Full text link
    Satellites constitute an important fraction of the overall galaxy population and are believed to form in dark matter subhalos. Here we use the cosmological hydrodynamic simulation TNG100 to investigate how the formation histories of subhalos affect the properties and evolution of their host galaxies. We use a scaled formation time (anfa_{\rm nf}) to characterize the mass assembly histories of the subhalos before they are accreted by massive host halos. We find that satellite galaxies in young subhalos (low anfa_{\rm nf}) are less massive and more gas rich, and have stronger star formation and a higher fraction of ex situ stellar mass than satellites in old subhalos (high anfa_{\rm nf}). Furthermore, these low anfa_{\rm nf} satellites require longer timescales to be quenched as a population than the high anfa_{\rm nf} counterparts. We find very different merger histories between satellites in fast accretion (FA, anf1.3a_{\rm nf}1.3) subhalos. For FA satellites, the galaxy merger frequency dramatically increases just after accretion, which enhances the star formation at accretion. While, for SA satellites, the mergers occur smoothly and continuously across the accretion time. Moreover, mergers with FA satellites happen mainly after accretion, while a contrary trend is found for SA satellites. Our results provide insight into the evolution and star formation quenching of the satellite population.Comment: 21 pages, 10 figures, accepted for publication in Ap

    Frequency-dependent Switching Control for Disturbance Attenuation of Linear Systems

    Full text link
    The generalized Kalman-Yakubovich-Popov lemma as established by Iwasaki and Hara in 2005 marks a milestone in the analysis and synthesis of linear systems from a finite-frequency perspective. Given a pre-specified frequency band, it allows us to produce passive controllers with excellent in-band disturbance attenuation performance at the expense of some of the out-of-band performance. This paper focuses on control design of linear systems in the presence of disturbances with non-strictly or non-stationary limited frequency spectrum. We first propose a class of frequency-dependent excited energy functions (FD-EEF) as well as frequency-dependent excited power functions (FD-EPF), which possess a desirable frequency-selectiveness property with regard to the in-band and out-of-band excited energy as well as excited power of the system. Based upon a group of frequency-selective passive controllers, we then develop a frequency-dependent switching control (FDSC) scheme that selects the most appropriate controller at runtime. We show that our FDSC scheme is capable to approximate the solid in-band performance while maintaining acceptable out-of-band performance with regard to global time horizons as well as localized time horizons. The method is illustrated by a commonly used benchmark model

    Comparative Transcriptome Analysis of Resistant and Susceptible Tomato Lines in Response to Infection by Xanthomonas perforans Race T3

    Get PDF
    Bacterial spot, incited by several Xanthomonas sp., is a serious disease in tomato (Solanum lycopersicum L.). Although genetics of resistance has been widely investigated, the interactions between the pathogen and tomato plants remain unclear. In this study, tanscriptomes of X. perforans race T3 infected tomato lines were compared to those of controls. An average of 7 million reads were generated with approximately 21,526 genes mapped in each sample post-inoculation at 6h (6 HPI) and 6d (6 DPI) using RNA-sequencing technology. Overall, the numbers of differentially expressed genes (DEGs) were higher in the resistant tomato line PI 114490 than in the susceptible line OH 88119, and the numbers of DEGs were higher at 6 DPI than at 6 HPI. Fewer genes (78 in PI 114490 and 15 in OH 88119) were up-regulated and most DEGs were down-regulated, suggesting that the inducible defense response might not be fully activated at 6 HPI. Accumulation expression levels of 326 co-up regulated genes in both tomato lines at 6 DPI might be involved in basal defense, while the specific and strongly induced genes at 6 DPI might be correlated with the resistance in PI114490. Most DEGs were involved in plant hormone signal transduction, plant-pathogen interaction and phenylalanine metabolism, and the genes significantly up-regulated in PI114490 at 6 DPI were associated with defense response pathways. DEGs containing NBS-LRR domain or defense-related WRKY transcription factors were also identified. The results will provide a valuable resource for understanding the interactions between X. perforans and tomato plants

    Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering

    Get PDF
    AbstractPorous scaffolds for bone repair were prepared from newly designed segmented aliphatic polyurethane based on glyceride of castor oil and isophorone diisocyanate. To promote the scaffolds' biological and mechanical properties, hydroxyapatite powder was incorporated into the polymer matrix. The scaffold (named as HA/GCPU) with 40 wt% HA had an average pore size of 500 μm and a compressive strength of 4.6 MPa. The in vitro cell culture studies demonstrated that the HA/GCPU scaffold owned good cytocompatibility. The scaffold and cell-seeded scaffold were implanted in defects (Ф3 mm × 3 mm) of femoral condyle of Sprague–Dawley rats, respectively. New bone could extensively form in both the scaffold and cell-seeded scaffold. It indicates that the HA/GCPU composite scaffold has good prospect for bone repair and regeneration

    Point Cloud Upsampling via Cascaded Refinement Network

    Full text link
    Point cloud upsampling focuses on generating a dense, uniform and proximity-to-surface point set. Most previous approaches accomplish these objectives by carefully designing a single-stage network, which makes it still challenging to generate a high-fidelity point distribution. Instead, upsampling point cloud in a coarse-to-fine manner is a decent solution. However, existing coarse-to-fine upsampling methods require extra training strategies, which are complicated and time-consuming during the training. In this paper, we propose a simple yet effective cascaded refinement network, consisting of three generation stages that have the same network architecture but achieve different objectives. Specifically, the first two upsampling stages generate the dense but coarse points progressively, while the last refinement stage further adjust the coarse points to a better position. To mitigate the learning conflicts between multiple stages and decrease the difficulty of regressing new points, we encourage each stage to predict the point offsets with respect to the input shape. In this manner, the proposed cascaded refinement network can be easily optimized without extra learning strategies. Moreover, we design a transformer-based feature extraction module to learn the informative global and local shape context. In inference phase, we can dynamically adjust the model efficiency and effectiveness, depending on the available computational resources. Extensive experiments on both synthetic and real-scanned datasets demonstrate that the proposed approach outperforms the existing state-of-the-art methods.Comment: The first two authors contributed equally to this work. The code is publicly available at https://github.com/hikvision-research/3DVision. Accepted to ACCV 2022 as oral presentatio

    Highly Anisotropic Elastic Properties of Suspended Black Arsenic Nanoribbons

    Full text link
    Anisotropy, as an exotic degree of freedom, enables us to discover the emergent two-dimensional (2D) layered nanomaterials with low in-plane symmetry and to explore their outstanding properties and promising applications. 2D black arsenic (b-As) with puckered structure has garnered increasing attention these years owing to its extreme anisotropy with respect to the electrical, thermal, and optical properties. However, the investigation on mechanical properties of 2D b-As is still lacking, despite much effort on theoretical simulations. Herein, we report the highly anisotropic elastic properties of suspended b-As nanoribbons via atomic force microscope-based nanoindentation. It was found that the extracted Young's modulus of b-As nanoribbons exhibits remarkable anisotropy, which approximates to 72.2 +- 5.4 and 44.3 +- 1.4 GPa along zigzag and armchair directions, respectively. The anisotropic ratio reaches up to ~ 1.6. We expect that these results could lay a solid foundation for the potential applications of 2D anisotropic nanomaterials in the next-generation nanomechanics and optoelectronics.Comment: 17 pages, 5 figure

    The Simulation Analysis of Optimal Policy Including Introduction of Biomass Plant Technology for Decreasing Water Pollutions in Jiaxing City, China

    Full text link
    In the study, we proposed the environmental policies to decrease water pollutants that generate from household, non-point and production in Jiaxing city of China. We especially introduced biomass plant technology for pig farming industry in order to improve the water environment. We constructed environmental model and social economic model by computer simulation that evaluated the efficiency of biomass plant technology from both water environmental preservation and social economic development. The research established the significance and feasibility of introducing biomass plant technology that allows simultaneous pursuit of environmental improvement and regional development. The comprehensive evaluation and optimal policies are expected to form the basis of decision-making in Jiaxing city

    Endogenous Derivation of Optimal Environmental Policies for Proper Treatment of Stockbreeding Wastes in the Upstream Region of Miyun Reservoir, Beijing

    Full text link
    Stockbreeding industries are increasing rapidly in rural areas around big cities in China, especially the rural areas around Beijing. This increase carries high risks to the environment due to emissions of large amounts of pollutants in terms of COD (chemical oxygen demand), T-N (total nitrogen) and T-P (total phosphorus) as well as greenhouse gases to rivers and the atmosphere. On the other hand, stockbreeding wastes are a typical biomass resource and can be used as an energy source by advanced new technologies. In this study, we selected Miyun County of Beijing and focused on analyzing the synthetic environmental management policies by computer simulation including the introduction of two new technologies to improve the environment and provide more biomass energy. The model considered both the total ecological system of the objective region and the social-economic situational changes during a ten year period from 2007 to 2016. The basic aim of this article has been to develop a dynamic liner model, and to verify it through carrying out simulations in order to evaluate the possibility and feasibility to introduce new technologies into rural areas around big cities in China and research the arrangement of the new technologies to realize effective utilization of stockbreeding biomass resource. When we adopted the policy to introduce two new technologies, the policy was a very effective tool to reduce environmental pollutants in all simulations. The introduction of two new technologies raised the level of economic growth by 10% as compared to not adopting the new technologies policy. When the two new technologies were introduced, the objective value (total T-N) showed a reduction of about 13% as compared to not adopting the new technologies. The purpose of our research is to establish effective utilization methods for biomass resources as well as coordinate resource reutilization, environmental preservation and economic development, and finally realize sustainable development of the society
    corecore