18 research outputs found

    The mechanisms of Yu Ping Feng San in tracking the cisplatin-resistance by regulating ATP-binding cassette transporter and glutathione S-transferase in lung cancer cells

    Get PDF
    Cisplatin is one of the first line anti-cancer drugs prescribed for treatment of solid tumors; however, the chemotherapeutic drug resistance is still a major obstacle of cisplatin in treating cancers. Yu Ping Feng San (YPFS), a well-known ancient Chinese herbal combination formula consisting of Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix, is prescribed as a herbal decoction to treat immune disorders in clinic. To understand the fast-onset action of YPFS as an anti-cancer drug to fight against the drug resistance of cisplatin, we provided detailed analyses of intracellular cisplatin accumulation, cell viability, and expressions and activities of ATP-binding cassette transporters and glutathione S-transferases (GSTs) in YPFS-treated lung cancer cell lines. In cultured A549 or its cisplatin-resistance A549/DDP cells, application of YPFS increased accumulation of intracellular cisplatin, resulting in lower cell viability. In parallel, the activities and expressions of ATP-binding cassette transporters and GSTs were down-regulated in the presence of YPFS. The expression of p65 subunit of NF-κB complex was reduced by treating the cultures with YPFS, leading to a high ratio of Bax/Bcl-2, i.e. increasing the rate of cell death. Prim-O-glucosylcimifugin, one of the abundant ingredients in YPFS, modulated the activity of GSTs, and then elevated cisplatin accumulation, resulting in increased cell apoptosis. The present result supports the notion of YPFS in reversing drug resistance of cisplatin in lung cancer cells by elevating of intracellular cisplatin, and the underlying mechanism may be down regulating the activities and expressions of ATP-binding cassette transporters and GSTs

    Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor

    No full text
    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter

    A MIMO Sliding Mode Approach to Limit Protection in Aero-Engines

    No full text
    This paper proposes a scheme for limit protection in aero-engines with two control inputs and two regulated variables. The strategy extends existing results based on single-input sliding mode regulators and the min-max switching logic. The proposed multi-input strategy is able to manage engine limits effectively and offers better transient response than the traditional min-max architecture with linear regulators. The paper presents design guidelines for the multivariable sliding mode controller and the switching logic. The influence of key parameters is described and a simulation-based comparative study is made between the proposed approach and the existing single-input approach. It is shown that the multi-input technique has two clear advantages over the single-input approach, namely the ability to track fan speed (or other output related to thrust) even with harsh constrains, and the possibility of faster responses with smaller fuel flows by adjusting a secondary setpoint reference. Copyright © 2015 by ASM

    A MIMO Sliding Mode Approach to Limit Protection in Aero-Engines

    No full text
    This paper proposes a scheme for limit protection in aero-engines with two control inputs and two regulated variables. The strategy extends existing results based on single-input sliding mode regulators and the min-max switching logic. The proposed multi-input strategy is able to manage engine limits effectively and offers better transient response than the traditional min-max architecture with linear regulators. The paper presents design guidelines for the multivariable sliding mode controller and the switching logic. The influence of key parameters is described and a simulation-based comparative study is made between the proposed approach and the existing single-input approach. It is shown that the multi-input technique has two clear advantages over the single-input approach, namely the ability to track fan speed (or other output related to thrust) even with harsh constrains, and the possibility of faster responses with smaller fuel flows by adjusting a secondary setpoint reference. Copyright © 2015 by ASM

    Multivariable Sliding-Mode Strategy with Output Constraints for Aeroengine Propulsion Control

    No full text

    Impact of persulfate and ultraviolet light activated persulfate pre-oxidation on the formation of trihalomethanes, haloacetonitriles and halonitromethanes from the chlor(am)ination of three antibiotic chloramphenicols.

    No full text
    Persulfate oxidation processes, with and without activation using ultraviolet light (respectively UV/PS and PS) have the potential to degrade anthropogenic chemicals in water. However, little is known about the impact of PS or UV/PS pre-oxidation on downstream formation of disinfection by-products (DBPs). In this study the three antibiotic chloramphenicols (chloramphenicol and two of its analogues [thiamphenicol and florfenicol], referred to collectively as CAPs), which frequently occur in wastewater-impacted source waters used by drinking water treatment plants, were selected as model antibiotic compounds. The formation of carbonaceous and nitrogenous disinfection by-products, including halomethanes, haloacetonitriles and halonitromethanes, during chlorination and chloramination preceded by PS and UV/PS was investigated. No significant concentrations of haloacetonitriles and halonitromethanes were detected during chlorination. During chloramination chloramphenicol formed a considerable amount of dichloronitromethane (e.g., 3.44±0.33% mol/mol at NH 2 Cl dose =1 mM) and trichloronitromethane (e.g., 0.79±0.07% mol/mol at NH 2 Cl dose =1 mM), compared with THM and HAN formation. PS pre-oxidation achieved a statistically significant reduction in trichloromethane formation from chlorination, and in HAN and HNM formation from chloramination. Although UV/PS slightly increased dichloroacetonitrile formation during chloramination, it significantly decreased dichloronitromethane and trichloronitromethane formation during chloramination. Overall, the use of PS and UV/PS has the potential to have contrasting impacts on DBP formation in heavily wastewater-impacted waters, depending on the disinfection method. Hence, their application needs to be carefully balanced against the downstream effect on DBP formation

    Increased Formation of Halomethanes During Chlorination of Chloramphenicol in Drinking Water by UV Irradiation, Persulfate Oxidation, and Combined UV/Persulfate Pre-Treatments

    No full text
    Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination

    MiR-766-3p and miR-671-5p attenuate aristolochic acid-induced hepatotoxicity by directly targeting the key bioactivating enzyme NQO1

    No full text
    Aristolochic acid (AA) as an emerging contaminant in herbal medicines or crops has been well-recognized for causing nephropathy since 1990s. Over the last decade, mounting evidence has linked AA to liver injury; however, the underlying mechanism is poorly elucidated. MicroRNAs respond to environmental stress and mediate multiple biological processes, thus showing biomarker potentials prognostically or diagnostically. In the present study, we investigated the role of miRNAs in AA-induced hepatotoxicity, specifically in regulating NQO1, the key enzyme responsible for AA bioactivation. In silico analysis showed that hsa-miR-766-3p and hsa-miR-671-5p were significantly associated with AAI exposure as well as NQO1 induction. A 28-day rat experiment of 20 mg/kg AA exposure demonstrated a 3-fold increase of NQO1 and an almost 50 % decrease of the homologous miR-671 that were accompanied with liver injury, which was consistent with in silico prediction. Further mechanistic investigation using Huh7 cells with IC50 of AAI at 146.5 µM showed both hsa-miR-766-3p and hsa-miR-671-5p were able to directly bind to and down-regulate NQO1 basal expression. In addition, both miRNAs were shown to suppress AAI-induced NQO1 upregulation in Huh7 cells at a cytotoxic concentration of 70 μM, and consequently alleviate AAI-induced cellular effects, including cytotoxicity and oxidative stress. Together, these data illustrate that miR-766-3p and miR-671-5p attenuate AAI-induced hepatotoxicity, and thus have monitoring and diagnostic potentials
    corecore