295 research outputs found

    Retinoic acid and the development of the endoderm

    Get PDF
    Retinoic acid (RA) is an important signaling molecule in the development of the endoderm and an important molecule in protocols used to generate endodermal cell types from stem cells. In this review, we describe the RA signaling pathway and its role in the patterning and specification of the extra embryonic endoderm and different endodermal organs. The formation of endoderm is an ancient evolutionary feature and RA signaling appears to have coevolved with the vertebrate lineage. Towards that end, we describe how RA participates in many regulatory networks required for the formation of extraembryonic structures as well as the organs of the embryo proper

    Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm

    Get PDF
    Given that the lateral plate mesoderm (LPM) gives rise to the cardiovascular system, identifying the cascade of signalling events that subdivides the LPM into distinct regions during development is an important question. Retinoic acid (RA) is known to be necessary for establishing the expression boundaries of important transcription factors that demarcate distinct regions along the anterior posterior axis of the LPM. Here, we demonstrate that fibroblast growth factor (Fgf) signalling is also necessary for regulating the expression domains of the same transcription factors (nkx2.5, foxf1, hand1 and sall3) by restricting the RA responsive LPM domains. When Fgf signalling is inhibited in neurula stage embryos, the more posterior LPM expression domains are lost, while the more anterior domains are extended further posterior. The domain changes are maintained throughout development as Fgf inhibition results in similar domain changes in late stage embryos. We also demonstrate that Fgf signalling is necessary for both the initiation of heart specification, and for maintaining heart specification until overt differentiation occurs. Fgf signalling is also necessary to restrict vascular patterning and create a vascular free domain in the posterior end of the LPM that correlates with the expression of hand1. Finally, we show cross talk between the RA and Fgf signalling pathways in the patterning of the LPM. We suggest that this tissue wide patterning event, active during the neurula stage, is an initial step in regional specification of the LPM, and this process is an essential early event in LPM patterning. © 2011 Elsevier Ireland Ltd

    Paper Session III-B - Closed Ecological Life Support System (CELSS) Modeling

    Get PDF
    A CELSS is a critical technology for the Space Exploration Initiative. NASA KSC has been performing CELSS research for several years, developing data related to CELSS design and operation. MDSSC-KSC has recently developed OCAM, a CELSS modeling tool, and has been using this tool to evaluate CELSS concepts. The tool models carbon, hydrogen, and oxygen recycling. Multiple crops and plant types can be simulated. Resource recovery options from inedible biomass include leaching, enzyme treatment, aerobic digestion and mushroom and fish growth. Data for the models has been taken primarily from the KSC CELSS Breadboard project. Results include time-history graphs of biomass, carbon dioxide, and oxygen; energy consumption; and manpower requirements. Expected results that were demonstrated include the benefit of using many small crops overlapping in time, instead of a single large crop. Unanticipated results include startup transients which reduce the benefit of multiple small crops. The relative contributions of mass, energy, and manpower to system cost have been analyzed in order to determine appropriate research directions

    Harim. Lukim. Painim Aut. Komuniti Tok Piksa Film Educational Guide

    Get PDF
    The education guide provides exercises for facilitators to encourage viewers of the Komuniti Tok Piksa films to explore and discuss the themes explored in the films. The film series has emerged out of a collaboration of local communities in the highlands and people living with HIV who worked together to produce five high-quality, professional films. These stories reveal the effect of HIV on the lives of individuals, families and communities in 5 provinces in the Papua New Guinea highlands region.The films are intended to promote discussion and debate on HIV related topics such as risk, education and prevention, testing, treatment, stigma, care and support and positive living. Diverse perspectives are presented through the eyes of a range of people and communities. These stories celebrate the strength of the people who share and reflect on their experiences of HIV in Papua New Guinea

    Expression of ski can act as a negative feedback mechanism on retinoic acid signaling

    Get PDF
    Background: Retinoic acid signaling is essential for many aspects of early development in vertebrates. To control the levels of signaling, several retinoic acid target genes have been identified that act to suppress retinoic acid signaling in a negative feedback loop. The nuclear protein Ski has been extensively studied for its ability to suppress transforming growth factor-beta (TGF-β) signaling but has also been implicated in the repression of retinoic acid signaling. Results: We demonstrate that ski expression is up-regulated in response to retinoic acid in both early Xenopus embryos and in human cell lines. Blocking retinoic acid signaling using a retinoic acid antagonist results in a corresponding decrease in the levels of ski mRNA. Finally, overexpression of SKI in human cells results in reduced levels of CYP26A1 mRNA, a known target of retinoic acid signaling. Conclusions: Our results, coupled with the known ability of Ski to repress retinoic acid signaling, demonstrate that Ski expression is a novel negative feedback mechanism acting on retinoic acid signaling. Developmental Dynamics 242:604-613, 2013. © 2013 Wiley Periodicals, Inc

    Rac1 signaling is required for anterior second heart field cellular organization and cardiac outflow tract development

    Get PDF
    Background-The small GTPase Rac1 regulates diverse cellular functions, including both apicobasal and planar cell polarity pathways; however, its role in cardiac outflow tract (OFT) development remains unknown. In the present study, we aimed to examine the role of Rac1 in the anterior second heart field (SHF) splanchnic mesoderm and subsequent OFT development during heart morphogenesis. Methods and Results-Using the Cre/loxP system, mice with an anterior SHF-specific deletion of Rac1 (Rac1SHF) were generated. Embryos were collected at various developmental time points for immunostaining and histological analysis. Intrauterine echocardiography was also performed to assess aortic valve blood flow in embryos at embryonic day 18.5. The Rac1SHF splanchnic mesoderm exhibited disruptions in SHF progenitor cellular organization and proliferation. Consequently, this led to a spectrum of OFT defects along with aortic valve defects in Rac1SHF embryos. Mechanistically, it was found that the ability of the Rac1SHF OFT myocardial cells to migrate into the proximal OFT cushion was severely reduced. In addition, expression of the neural crest chemoattractant semaphorin 3c was decreased. Lineage tracing showed that anterior SHF contribution to the OFT myocardium and aortic valves was deficient in Rac1SHF hearts. Furthermore, functional analysis with intrauterine echocardiography at embryonic day 18.5 showed aortic valve regurgitation in Rac1SHF hearts, which was not seen in control hearts. Conclusions-Disruptions of Rac1 signaling in the anterior SHF results in aberrant progenitor cellular organization and defects in OFT development. Our data show Rac1 signaling to be a critical regulator of cardiac OFT formation during embryonic heart development

    Understanding early organogenesis using a simplified in situ hybridization protocol in Xenopus

    Get PDF
    Organogenesis is the study of how organs are specified and then acquire their specific shape and functions during development. The Xenopuslaevis embryo is very useful for studying organogenesis because their large size makes them very suitable for identifying organs at the earliest steps in organogenesis. At this time, the primary method used for identifying a specific organ or primordium is whole mount in situ hybridization with labeled antisense RNA probes specific to a gene that is expressed in the organ of interest. In addition, it is relatively easy to manipulate genes or signaling pathways in Xenopus and in situ hybridization allows one to then assay for changes in the presence or morphology of a target organ. Whole mount in situ hybridization is a multi-day protocol with many steps involved. Here we provide a simplified protocol with reduced numbers of steps and reagents used that works well for routine assays. In situ hybridization robots have greatly facilitated the process and we detail how and when we utilize that technology in the process. Once an in situ hybridization is complete, capturing the best image of the result can be frustrating. We provide advice on how to optimize imaging of in situ hybridization results. Although the protocol describes assessing organogenesis in Xenopus laevis, the same basic protocol can almost certainly be adapted to Xenopus tropicalis and other model systems

    Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lung and thyroid are derived from the anterior endoderm. Retinoic acid and Fgf signalling are known to be essential for development of the lung in mouse but little is known on how the lung and thyroid are specified in <it>Xenopus</it>.</p> <p>Results</p> <p>If either retinoic acid or Fgf signalling is inhibited, there is no differentiation of the lung as assayed by expression of <it>sftpb</it>. There is no change in expression of thyroid gland markers when retinoic acid signalling is blocked after gastrulation and when Fgf signalling is inhibited there is a short window of time where <it>pax2 </it>expression is inhibited but expression of other markers is unaffected. If exogenous retinoic acid is given to the embryo between embryonic stages 20 and 26, the presumptive thyroid expresses <it>sftpb </it>and <it>sftpc</it>, specific markers of lung differentiation and expression of key thyroid transcription factors is lost. When the presumptive thyroid is transplanted into the posterior embryo, it also expresses <it>sftpb</it>, although <it>pax2 </it>expression is not blocked.</p> <p>Conclusions</p> <p>After gastrulation, retinoic acid is required for lung but not thyroid differentiation in <it>Xenopus </it>while Fgf signalling is needed for lung but only for early expression of <it>pax2 </it>in the thyroid. Exposure to retinoic acid can cause the presumptive thyroid to switch to a lung developmental program.</p

    Sapropterin Treatment Prevents Congenital Heart Defects Induced by Pregestational Diabetes Mellitus in Mice.

    Get PDF
    Background Tetrahydrobiopterin is a cofactor of endothelial NO synthase ( eNOS ), which is critical to embryonic heart development. We aimed to study the effects of sapropterin (Kuvan), an orally active synthetic form of tetrahydrobiopterin on eNOS uncoupling and congenital heart defects ( CHD s) induced by pregestational diabetes mellitus in mice. Methods and Results Adult female mice were induced to pregestational diabetes mellitus by streptozotocin and bred with normal male mice to produce offspring. Pregnant mice were treated with sapropterin or vehicle during gestation. CHD s were identified by histological analysis. Cell proliferation, eNOS dimerization, and reactive oxygen species production were assessed in the fetal heart. Pregestational diabetes mellitus results in a spectrum of CHD s in their offspring. Oral treatment with sapropterin in the diabetic dams significantly decreased the incidence of CHD s from 59% to 27%, and major abnormalities, such as atrioventricular septal defect and double-outlet right ventricle, were absent in the sapropterin-treated group. Lineage tracing reveals that pregestational diabetes mellitus results in decreased commitment of second heart field progenitors to the outflow tract, endocardial cushions, and ventricular myocardium of the fetal heart. Notably, decreased cell proliferation and cardiac transcription factor expression induced by maternal diabetes mellitus were normalized with sapropterin treatment. Furthermore, sapropterin administration in the diabetic dams increased eNOS dimerization and lowered reactive oxygen species levels in the fetal heart. Conclusions Sapropterin treatment in the diabetic mothers improves eNOS coupling, increases cell proliferation, and prevents the development of CHD s in the offspring. Thus, sapropterin may have therapeutic potential in preventing CHD s in pregestational diabetes mellitus

    Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport.

    Get PDF
    A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4\u27-diisothiocyanatostilbene-2,2\u27-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT
    • …
    corecore