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Abstract: Retinoic acid (RA) is an important signaling molecule in the development of the 

endoderm and an important molecule in protocols used to generate endodermal cell types 

from stem cells. In this review, we describe the RA signaling pathway and its role in the 

patterning and specification of the extra embryonic endoderm and different endodermal 

organs. The formation of endoderm is an ancient evolutionary feature and RA signaling 

appears to have coevolved with the vertebrate lineage. Towards that end, we describe how 

RA participates in many regulatory networks required for the formation of extraembryonic 

structures as well as the organs of the embryo proper. 

Keywords: retinoic acid; retinoids; endoderm; embryology; development;  
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1. Introduction 

Retinoic acid (RA) signaling is one of the fundamental regulatory pathways in the development of 

vertebrates with roles in the differentiation and patterning of lineages from all three germ layers [1,2] 
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including the endoderm, which is the subject of this review. A significant role for RA signaling in the 

development of endoderm might appear somewhat surprising because endoderm is a germ layer of all 

multi-layered embryos, whereas the RA signaling system has often been described as a signaling 

system that has arisen during chordate evolution [3,4]. There is now, however, evidence that homologues 

of enzymes and receptors necessary for RA signaling exist in different invertebrates [5–7], but it is still 

not clear as to whether or not these homologues function in an analogous manner. If in fact they have 

alternate functions, then retinoic acid signaling may be an adaption that occurred during evolution and 

unique to the chordates. Whatever the case, that Caenorhabditis and Drosophila do not have functional 

RA receptors would indicate that a functional endoderm does not require retinoic acid signaling. In 

addition, some urochordates appear to have lost the fundamental machinery necessary for RA 

signaling, yet still produce a functional endoderm [8]. A lack of retinoic acid signaling does not alter 

initial endoderm formation in zebrafish [9], Xenopus [10] or the initial endoderm patterning in chick [11]. 

That said, the endoderm in vertebrates has evolved a number of novel innovations, including the generation 

of unique endoderm-derived organs and the formation of an extraembryonic endoderm. It is in the 

development of these novel endoderm features that retinoic acid signaling is clearly required. 

2. What is Endoderm? 

Endoderm is the inner germ layer in both diploblastic and triploblastic embryos. In general, it forms 

an internal epithelial tube that represents the digestive tract. This primitive feeding feature, coupled 

with recent analysis of tissue-specific gene expression in diverse organisms, suggests that the 

endoderm is the original germ layer [12]. In vertebrates, that tube has a series of lateral extensions, 

which give rise to organs including the thyroid gland, thymus, lungs, liver, and pancreas (Figure 1). 

Ectoderm, the outer germ layer of the embryo, will form the skin, nervous system and the specialized 

neural crest cells. Mesoderm, the layer that comes to lie between the endoderm and mesoderm forms a 

variety of organs including the cardiovascular system, muscles and kidneys. Both molecular and fate 

mapping evidence suggests that the endoderm and mesoderm actually arise from a common progenitor 

termed the mesendoderm [13]. Key transcription factors for mesoderm and endoderm are expressed in 

the same cells in zebrafish [14,15] and Xenopus [16] and the fate map of the Caenorhabiditis embryo 

shows that one blastomere gives rise to both lineages [17]. However, given the ancient origin of the 

endoderm relative to mesoderm [12], it is likely that the common progenitor represents a derived 

developmental strategy and, although widespread, is not universal [18]. 

Endoderm differentiation requires integration of multiple signaling events early in development. 

Nodal, a member of the TGFβ superfamily of signaling molecules is essential for the development of 

the mesendoderm [19] and varying levels of Nodal signaling are important not only in the segregation 

of the endoderm from mesoderm [20], but also in patterning the extraembryonic endoderm [21,22] as 

described below. Nodal signaling subsequently regulates the expression of several transcription factors 

that represent a conserved network essential for differentiation of the endoderm including members of 

the Forkhead, Gata, Mixer, Sox, and PouV transcription factor families [13,23,24]. Interestingly, 

metabolism of maternal RA by Cyp26 enzymes is required to limit the expression of Nodal in the 

mouse, thereby preventing duplication of the body axis, but it is unclear as to whether or not this RA 

plays any role in mesendoderm differentiation [25]. That Wnt signaling is required for the maintenance 
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of Nodal expression [26] and Nodal is in turn required for the maintenance of Wnt3 expression [27] 

would indicate complex interactions are needed to regulate Nodal levels that are critical for endoderm 

differentiation. Although RA signaling is required for many early developmental events, there is no 

evidence that it plays a role in endodermal differentiation in vivo. This is surprising as RA is routinely 

used to generate endoderm from several undifferentiated embryonal carcinoma and embryonic stem 

cell lines [28–31]. Where RA does appear to play important roles is in the patterning of the endoderm 

once it is differentiated and in the differentiation of specific endodermal organs. 

 

Figure 1. Derivatives of the endoderm form along the gut tube in a precise anterior to 

posterior order. The gut is first divided into broad regions of foregut, midgut, and hindgut. 

Subsequently, the gut is further subdivided so that individual organ types form in a precise 

order with the thyroid being the most posterior. Retinoic acid (RA) is essential for the 

development of most organ primordial posterior to the thyroid with the strongest 

requirement being in the dorsal anterior derivatives such as dorsal pancreas and lung. The 

pancreas is formed from a dorsal and ventral bud. Retinoic acid is required for dorsal 

pancreatic bud formation but not the ventral bud in most organisms. 

3. Retinoic Acid Signaling 

As cell signaling pathways go, that involving RA is essentially quite simple although, as with most 

biological systems, it is more complicated than it first appears. Retinoic acid is a metabolite of vitamin 

A and a small molecule, with a molecular weight of 300 daltons. It is highly lipophilic, enabling it to 

readily pass through the plasma membrane and move to the nucleus, where it binds to heterodimers of 

nuclear receptors belonging to one of two small families: the RA receptors (RARα, RARβ, and RARγ) 

and the retinoid X receptors (RXRα, RXRβ, and RXRγ) [2,32]. When RA is absent, RAR/RXR 

heterodimers bind specific DNA binding sites within the genome where they act to recruit repressive 

complexes that inhibit transcription [33]. In the presence of RA, however, the repressive complex 

bound to the receptor is exchanged for an activating complex and transcription at the target site is 

promoted. Thus, the RARs are considered ligand-activated transcription factors. As the receptors are 

already present on many target genes, this makes RA the limiting factor in deciding whether or not 

target genes are activated. 
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3.1. Generating Retinoic Acid 

Vitamin A (retinol) is taken up in the maternal diet and is supplied to the egg during oogenesis. The 

first step in the formation of RA is the conversion of retinol to retinaldehyde. Different members of the 

alcohol dehydrogenase or retinol dehydrogenase families catalyze this oxidation step. Of these enzymes, 

the most important for early embryogenesis is Rdh10. Mice lacking this enzyme have severe 

developmental defects and die at about E10.5 [34–36]. The strong requirement for Rdh10 in RA signaling 

is also conserved in Xenopus [37]. This step in RA synthesis is strongly regulated by a negative feedback 

loop, where the addition of RA causes a down regulation in Rdh10 expression and a concomitant up 

regulation of Dhrs3a, an enzyme that catalyzes the reverse reaction generating retinol from 

retinaldehyde [38]. 

The subsequent generation and maintenance of all-trans RA levels is critical and the enzymes that 

both generate and subsequently catalyze it are also subject to tightly regulated feedback loops [2,39]. 

Indeed, RA teratogenicity is, in part, explained by a down regulation of RA signaling caused by the 

exposure to high levels of RA [40]. Several enzymes are responsible for the conversion of 

retinaldehyde to all-trans RA, primarily members of the Raldh family, with each member having 

unique developmental expression patterns [41]. Based on the phenotypes of mice lacking individual 

genes within the Raldh family, Aldh1a2 is the main enzyme responsible for RA production during 

early development. In mice, the loss of Aldh1a2 results in dramatic embryonic phenotypes with 

disruptions in multiple organs and lethality at E9.5–10.5 [42–45]. Interestingly, the loss of Aldh1a1 in 

mice does not result in any observable phenotype [46], while the loss of Aldh1a3 results in defects in 

the ocular and nasal regions [47] as well as neuronal differentiation in the brain [48]. 

There are alternative mechanisms for generating RA, including one that uses β-carotene as a  

substrate [49–52]. Unfortunately, the roles for these alternative pathways in development have not 

been fully explored. Importantly for this review, it appears that Aldh1a2 is the sole source of RA 

generation in the endoderm and the surrounding lateral plate mesoderm, at least until e9.5 in  

mouse [53]. 

Despite the fact that RA signaling activity appears to be primarily controlled by the levels of the 

ligand, the importance of catabolism is often overlooked [54]. The primary catabolic enzymes include 

members of the cytochrome p450 family, specifically Cyp26A1, Cyp26B1 and Cyp26C1 [55]. Loss of 

Cyp26 enzymes in zebrafish and mice results in severe phenotypes with caudal truncations, homeotic 

transformations and embryonic lethality [25,56–58]. It is interesting to note many of these phenotypes 

are very similar to the phenotype caused by the administration of teratogenic doses of RA [59]. 

3.2. Movement of Retinoic Acid 

Once generated, RA moves freely between cells, an activity that made it a proposed diffusible 

morphogen patterning limb development [60]. Specific cellular binding proteins exist that are thought 

to solubilize RA in order to aid in its intracellular transport through the aqueous cytoplasm to the nucleus 

and for facilitating its degradation by Cyp26A1. The role for the cellular retinoic acid-binding proteins 

(CRABPs and CRBP) is somewhat less clear. Despite recent work suggesting that the presence of 

these RA-binding proteins allows for greater fine-tuning of the RA signal [61], it is clear from the 
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knockouts in mice that CRABPs and CRBP are not essential proteins [62,63]. Thus, the requirement 

for these binding proteins in intercellular signaling by RA is not well understood, although a role for 

CRABPs in hindbrain patterning in zebrafish, presumably through altering the dynamics of the retinoic 

acid response, has been demonstrated [61].  

Movement across a membrane appears to be facilitated in some cell contexts by Stra6, a membrane 

bound protein that can interact with retinol binding protein, which binds retinol in the serum. The loss 

of Stra6 in the mouse has only a modest effect on the levels of RA signaling in most tissues, with the 

exception of the eye [64]. Here, the presence of Stra6 is necessary for both normal morphology and a 

proper visual response [65]. It is interesting to note that human mutations in STRA6 are associated with 

multiple developmental defects including, in some patients, lung hypoplasia [66,67]. 

3.3. Interaction with DNA 

RARs bind to DNA as a heterodimer with an RXR. As both receptors have essentially the same 

DNA recognition site (RGKTCA), a canonical retinoic acid response element (RARE) is usually two 

direct repeats of the recognition sequence, separated by a spacer region of variable length [68]. The use 

of chromatin immunoprecipitation (ChIP), however, with antibodies against RARs has demonstrated a 

much greater diversity of RAREs than previously appreciated, including direct repeats with no  

spacer [69]. There is also evidence that inverted repeats with no spacer can also the target for  

RARs [69]. ChIP results also suggest that RA bound to receptors already on the promoter of target genes 

may not be representative of all of the potential targets. For instance, RAR-DNA interactions appear after 

the addition of RA [70], suggesting that receptors lacking RA are not necessarily bound to DNA or that 

unbound receptors do not immunoprecipitate well. In addition, RAR phosphorylation has demonstrated 

the importance in regulating the activity of the receptor [71,72]. Specifically, deleting an RARγ2 in 

mouse ES cells and replacing it with the same receptor, but with mutated phospho-acceptor sites, 

demonstrated that phosphorylation was necessary for differentiation of these cells into neurons. 

In addition to the targeting based on binding to known RAREs, the specificity of binding is also 

regulated by interactions of other transcription factors and the epigenetic landscape around the RARE. 

Indeed, the cell specificity of the response to RA signaling is probably due to interactions with different 

regulatory proteins [73,74]. For example, fibroblasts and embryonic stem cells show clear differences in 

binding sites for RARs [73] as do embryonic stem cells and differentiated neurons [70]. Work in breast 

cancer cell lines has identified FoxA1 and GATA3 as potential tissue-specific co-regulators [75] and 

given the complexity of RA signaling in different cell types. The differing epigenetic signature of 

different cell types will also regulate where RARs may bind or regulate their activity levels [76]. 

Defining these cell-specific mechanisms for defining RA targets in different cells will be an important 

avenue for future research. 

4. The Role of Retinoic Acid in Anterior-Posterior Patterning of the Endoderm 

The initial steps in anterior-posterior patterning of the endoderm is started by a combination of Wnt, 

Fgf, and BMP signaling at the posterior end of the endoderm [13]. Wnt antagonism at the anterior end 

counteracts this signal, setting up an initial broad pattern of transcription factor expression. Hhex and 

Sox2 expression marks the presumptive foregut, Pdx1 the midgut, and Cdx expression the hindgut [13]. 
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Although the treatment of embryos with RA or RA antagonists near gastrulation can alter the 

boundaries of early endoderm, as shown by changes to pancreatic differentiation [9,10,77], it is not 

clear as to what the RA is affecting at these early stages.  

Studies of RA signaling in endoderm development has largely concentrated on its role in the 

differentiation and growth of particular endodermal organs and have demonstrated that RA is essential 

for the normal development of almost all of them. However, before organogenesis, RA plays an 

essential role in the anterior-posterior patterning of the endoderm, and it is clear that the requirement for 

RA for different organ systems differ depending approximately on their position along this axis [11]. 

However, RA does not act in a strictly anterior-posterior gradient. Based on the expression pattern of 

Aldh1a2 or of reporters of RA signaling, the highest regions of RA signaling appears to be the middle of 

the embryo, with the head and tail regions having little or no signaling activity (Figure 2). In Xenopus, 

this signaling also appears to be higher on the dorsal side [78,79]. This dorsal, middle region corresponds 

approximately to where more anterior organs, such as the dorsal pancreatic bud and lung that absolutely 

require RA are positioned. This requirement is not as crucial for the more posterior organs such as liver 

and ventral pancreatic bud. Interestingly, the thyroid, which is the most anterior organ derivative, must 

develop in the absence of RA [11,80]. Thus, the degree of requirement for RA in specific endodermal 

organs would appear to correspond to the levels of RA at a particular point along the anterior-posterior 

axis. Whether or not RA is in a gradient along that axis is tenuous, but the sensitivity of different regions 

to antagonists and the non-overlapping expression of Aldh1a2 and Cyp26 suggest that a graded 

distribution is likely [11]. What is clear is that RA generates anterior-posterior patterning in the 

developing neural tube [81,82] and in the mesoderm [83]. 

 

Figure 2. Retinoic acid activity varies along the anterior-posterior axis but does not form a 

precise gradient along the entire axis. Using either Aldh1a2 expression or reporters of RA 

activity, the regions showing RA activity (shown in light blue overlapping an embryo 

schematic) are roughly in the middle of the embryo with notable absence of signaling at the 

most anterior and posterior ends of the embryo. 

The requirement for RA in patterning all three germ layers leads to a key question in  

anterior-posterior patterning of the endoderm. The overlying lateral plate mesoderm helps to define the 

anterior-posterior pattern of the underlying endoderm [77,84] and although boundaries of gene 

expression domains within the overlying lateral plate mesoderm are quite broad, they are partially 

defined by RA [85,86]. However, the boundaries for the developing endodermal organs are 

considerably smaller. One of the lateral plate mesoderm domains can be outlined by the expression of 

foxF1, a forkhead family transcription factor whose expression domain overlies the dorso-anterior 

endoderm [85,87]. The foxF1 expression domain can be shifted by altering RA signaling [85] and loss 
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of foxF1 results in gut tube defects [87].  The defects, in addition to patterning, are mainly attributed to 

the inability of the lateral plate mesoderm to adequately surround the developing endoderm. Thus to 

generate the endodermal pattern, it is difficult to determine whether RA acts directly on the endoderm, 

indirectly on the overlying mesoderm, or a combination of both. Although studies of lung development 

support the latter [88], further investigation is needed with other endodermal organs to fully  

appreciate the roles for RA signaling in individual germ layers that are needed to generate the  

anterior-posterior pattern. 

5. Role of Retinoic acid in Individual Organ Systems 

5.1. Retinoic Acid and the Thyroid 

The thyroid is the most anterior of the endodermal organs and RA does not appear to play a role in 

its specification and differentiation. Reporters of RA activity do not show activity in the early mouse 

thyroid [88] and in the chick it develops in the absence of retinoic acid [11]. In Xenopus, the presence 

of RA actually causes the thyroid primordium to acquire characteristics of the lung, including the 

expression of surfactant protein genes [80]. That in both chick and Xenopus the expression of Hex in 

the thyroid is suppressed by the presence of RA, while expression in the liver is unchanged, would 

suggest that RA is suppressing the very early steps in thyroid differentiation [11,80]. 

5.2. Retinoic Acid and the Anterior Foregut 

The dependency on RA signaling becomes apparent as one moves posterior along the gut tube from 

the thyroid. The remainder of the foregut, immediately posterior to the thyroid, is a site of active RA 

signaling [89], and mice that lack Raldh2 die at about E10.5, prior to significant development of the 

foregut [42]. However, if the mothers are provided with exogenous RA, the lethality is partially rescued 

allowing for analysis of later foregut development. With only partial rescue or timed use of  

RA antagonists, such that lung development is initiated, the foregut and trachea are not well  

separated [89–91]. These results would indicate that RA is essential for maturation or morphogenesis 

in the anterior foregut. 

5.3. Retinoic Acid and the Pharynx 

Pharyngeal pouches are a complex tissue that is formed from components of all three germ layers 

and through interactions with the adjacent migrating neural crest. The pharyngeal endoderm, which 

contributes to the pouches arises between the thyroid and lung [92], is important in craniofacial 

development and is disrupted by either excess or reduced RA signaling [93]. Reduced signaling causes 

a decrease in the number of pharyngeal pouches [94–96] due to a loss of branchial arches 3 through  

6 [97]. In contrast, excess RA causes defects in the first two branchial arches [98]. Given the complex 

development of this region, it has been difficult to determine which cell types in the pharynx require 

RA. Experiments in a variety of animals have demonstrated that there are also roles for RA in 

patterning the migrating neural crest and signaling affects its development [94–96,98]. However, timed 

treatments with antagonists that do not disrupt the neural crest still cause pharyngeal arch defects and 
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direct changes in the expression of key endoderm genes, which would suggest that the endoderm is a 

key target of RA signaling [99]. 

Interactions between the neural crest and the pharyngeal endoderm result in a series of pouches that 

give rise to specialized endocrine glands including the thyroid (discussed above), parathyroid, thymus 

and the ultimobranchial body [100]. Which of these glands form, and which pharyngeal arch they are 

associated with, varies between phylogenetic groups and given that altering RA signaling alters arch 

patterning, it is not surprising that RA is related to these endocrine glands. Exogenous RA causes 

defects in the development of the thymus [101] and loss of retinoic acid signaling results in loss of 

both the parathyroid and thymus in mice [94]. 

Specification of the pharyngeal endoderm is not affected in zebrafish lacking RA, but the 

morphogenesis of the pouches is altered in a time dependent manner [95] and a point mutation in the 

zebrafish Aldh1a2 gene called neckless results in a loss of pouch 3 and 4 [102]. This disruption in 

morphogenesis could be due to the altered migration of cells or segmentation of the pouches, with 

reduced segmentation causing the reduction in pouch number [95]. 

An attractive mechanism for how RA alters pharyngeal endoderm is by altering the expression 

pattern of the Hox genes. This family of transcription factors are essential for anterior posterior 

patterning in all germ layers and a specific role in the pharyngeal endoderm is well established [103]. 

RA is able to shift the expression pattern of Hox genes in the pharyngeal mesoderm [11,94,98,99] and 

thus it is likely that RA can also regulate Hox expression in the pharyngeal endoderm [101]. Hox genes 

are known to vary in response to different concentrations of RA in many tissues and reporter  

assays for RA activity suggest that such a gradient of RA signaling exists in the pharyngeal  

endoderm [53,99,104]. 

Tbx1 is an important transcription factor that is at least partially responsible for a human hereditary 

defect called DiGeorge syndrome that has characteristic defects in branchial arch morphogenesis. 

Aldh1a2 and Tbx1 genetically interact suggesting that elements of the RA signaling pathway could 

modify the DiGeorge syndrome phenotype [105]. Interestingly, in zebrafish and Xenopus the 

patterning within the pharynx may be altered, but the overall length of the region appears to remain 

unchanged when compared to the position of the lung and thyroid [80,95]. In amphioxus, the posterior 

limit of the pharynx is regulated by RA [106]. This apparent difference in a role for defining pharyngeal 

boundaries could be due either to evolutionary change during vertebrate evolution or simply differing 

techniques or timing in the interference of RA signaling. 

5.4. Retinoic Acid and the Lung 

Retinoic acid is critical to the development of the lung and in mice lacking Aldh1a2, lungs are  

absent [91,107]. This requirement for RA is evolutionarily conserved [11,80]. Initial specification 

appears to be unaffected based on the presence of Nkx2.1 expression in mice with blocked RA 

signaling, but without RA the lung primordium does not enlarge or express markers of  

differentiation [108]. After initial specification, RA is necessary for the integration of multiple signaling 

pathways needed for lung development. In the early endoderm, expression of Dickopf, a secreted 

inhibitor of the Wingless (Wnt) pathway, is suppressed by RA signaling and this suppression allows for 

local activation of Wnt signaling. Wnt signaling in turn promotes a critical Fgf10 signal from the 
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adjacent mesoderm, which is necessary for the formation and growth of the lung bud [88]. At the same 

time, RA is necessary for the suppression of Tgfβ signaling which facilitates Fgf10 signaling [109]. 

Simultaneous suppression of Tgfβ signaling with antagonists while activating Wnt signaling will 

rescue lung bud formation in RA-deficient embryos [88]. That the same is true using beads soaked in 

Fgf [110] would strongly implicate this signaling network in promoting lung bud growth. Once the bud 

has grown, reduced RA signaling is needed for proper branching morphogenesis [111]. Given the tight 

regulation of Fgf signaling that is required for branching morphogenesis and the ability of RA to alter 

Fgf signaling, the observations that excess RA can disrupt branching is not surprising. 

Several studies have noted that there are differences in the requirement for RA between the left and 

right lobe of the lung. When there is maternal supplementation of RA to developing embryos lacking 

Aldh1a2, lung buds outgrowth occurs, but the right side develops much better than the left. In embryos 

with deletion of multiple RARs [91], or in embryos from mothers on a vitamin A deficient diet [112], 

lung development is poor. In these animals there is an observable lung, but left lobe is lost and the 

right is usually hypoplastic. It is still not clear what the basis is for these phenotypes, but the promotion 

of asymmetric Fgf10 expression by RA [88] is potentially involved [111,113]. RA is also known to 

alter left-right coordination in the somites [114,115], but it is not clear as to whether or not these 

alterations to left-right patterning are linked. Recently, morpholino knockdown of Rargb in zebrafish 

has shown that that the RA receptor is necessary for liver and pancreas asymmetries as well as heart 

looping, another indicator of disrupted left-right asymmetry [116] and similar organ asymmetries occur 

in Xenopus gut morphogenesis [117]. How these asymmetries are manifested will be critical in 

understanding if these defects are at the level of individual organ morphogenesis or the result of 

something more general. 

The role of RA in lung is clearly relevant to humans because mutations in the RA pathway are 

associated with syndromes linked to disrupted lung development, including PAGOD syndrome [118] 

and Matthew Wood syndrome that results from mutations in STRA6 [119]. Later roles for RA in lung 

maturation have also recently been demonstrated. Mice with dietary deficiencies in RA have increased 

smooth muscle differentiation in the fetal lung and this has implications for adult health in the mice. 

The RA deficient mice are hyper responsive to airway stimulation and the aberrant response persists 

regardless of the vitamin A status of the adult [120]. Thus, RA deficiencies in fetal life pose a 

significant health issue in the developing world, and have lifelong implications in terms of lung health 

in adults. 

5.5. Retinoic Acid and the Pancreas 

Retinoic acid is essential for normal pancreatic development. In mammalian embryos lacking 

Aldh1a2, there are significant defects in the pancreas [53,121]. The requirement is also evolutionarily 

conserved. Studies on avian embryos revealed that signals from the lateral plate mesoderm drive 

endodermal cells to express Pdx1 and thus take on a pancreatic fate [77]. Evidence suggests that RA 

may be that mesodermal signal required for initiation of Pdx1 expression [9,122]. Examination of 

mouse embryos carrying the RA-reporter transgene demonstrated that the pancreas is normally 

exposed to RA generated in the surrounding splanchnic lateral plate mesoderm [53]. In the mouse, 

expression of a dominant negative RAR in early pancreatic progenitors results in pancreatic agenesis 



J. Dev. Biol. 2015, 3 34 

 

 

also suggesting that the endoderm is a direct target of the RA signal promoting pancreatic  

development [123]. However, in chick explants, the effect of RA on promoting pancreas requires 

mesoderm suggesting that the RA is also acting on the mesoderm to drive pancreas  

differentiation [77]. Excess RA is able to drive an anterior expansion of the Pdx1 expression domain in 

zebrafish demonstrating that it is both necessary and sufficient for pancreas formation [124]. 

The pancreas is formed from two distinct buds, one dorsal and one ventral (Figure 1). In most 

organisms, the RA is required for development of the dorsal pancreas but that requirement does not 

extend to the ventral bud. In the mouse, the dorsal bud is lost in the mouse whereas the ventral bud is 

less affected. Treatment of Xenopus embryos with a retinoic acid receptor antagonist also shows a loss 

of the dorsal bud with no clear effect on the ventral bud [10,125]. Zebrafish embryos deficient in RA 

lack Pdx1 expression and consequently fail to develop any recognizable pancreas [9,126]. In the chick 

embryo, there is also loss of the both pancreatic buds with the loss of RA signaling [11]. In Xenopus, 

the dorsal bud develops into the endocrine pancreas whereas the ventral bud forms the  

exocrine pancreas. 

Cyp26 expression limits the size of the pancreas and that expression is regulated by retinoic acid. 

This provides a model where retinoic acid is necessary for formation of the pancreas and also creates a 

negative feedback loop that regulates pancreas size [124]. Size regulation by RA in the mouse 

pancreas, in particular the β-cell and α-cell mass, continues in the adult because vitamin A deficiency 

results in reduced mass that is subsequently restored when normal vitamin A levels are restored [127] 

5.6. Retinoic Acid and the Liver 

Retinoic acid is an important regulator of liver function and is essential for retinoic acid metabolism 

in the adult [128] and thus it is perhaps surprising that is apparently not essential for specification of  

the liver in model organisms, with the exception of zebrafish. Mice lacking Raldh2 still express key 

early liver transcription factors including Prox1 and Hhex in the region of the embryo destined to form  

liver [53]. Xenopus and chick are similar to mammals as liver specification occurs in embryos lacking RA 

activity [10,125]. Exogenous RA can suppress Hhex expression in the chick and Xenopus thyroid [11,80] 

and is also required for suppression of Hhex in the foregut endoderm between the thyroid and  

liver [11] but Hhex expression is not altered in the developing liver. In contrast, zebrafish embryos do 

require RA for liver specification and exogenous RA can cause ectopic liver formation [9]. Additional 

evidence for a role for RA in formation of the liver in zebrafish come from the suppression of Rbp4, a 

transporter of retinol in mammals, using splice-blocking morpholinos. Knockdown of Rbp4 mRNA 

results in duplicated liver buds in the embryos. As Rbp4 is expressed in the yolk syncytial layer and not the 

endoderm, it is thought that this could be due to migratory changes in liver precursors [129]. Further 

evidence that Rbp4 is altering RA signaling in the Rbp4 morphants is needed before a complete 

understanding of this phenotype. In mouse and chick embryos lacking RA signaling, the liver is smaller 

suggesting that RA does promote liver growth in later development [11,89] but liver specification does 

not require RA in those embryos. 
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5.7. Retinoic Acid and the Stomach 

RA signaling is active in the endoderm that will give rise to the stomach [89]. In mice lacking 

Aldh1a2, the stomach does not form properly with the posterior stomach that gives rise to the glandular 

portion of the stomach being absent [89]. Those mice also have reduced expression of Hox genes that 

are essential for regionally subdividing the Cdx expression domain into specific hindgut regions [130]. 

Similar to the lung, expression of Fgf10 in the stomach primordium requires RA signaling [89] which 

nicely corresponds to the requirement for Fgf10 signaling in the development of the glandular  

stomach [131]. 

5.8. Retinoic acid and Posterior Endoderm 

In comparison to the more anterior regions of the gut, less is known about the relationship between 

RA and the patterning of the hindgut. The lack of information is largely due to the lethality of embryos 

lacking RA signaling prior to complete patterning of the posterior regions of the gut. In addition, there 

are relatively few markers of early hindgut that could be used to understand early patterning events. 

Addition of exogenous RA clearly disrupts the morphogenesis of this region with lack of looping and 

rotation [132,133] and differing levels of RA may even be important in the evolution of novel gut 

morphologies [134]. However, loss of RA signaling experiments in the hindgut, that can circumvent 

the earlier requirements for RA in other tissues, are necessary for an in depth understanding of the role 

of RA in this region. 

Cdx genes are early markers of posterior endoderm and are essential for defining boundaries of the 

different gut domains including the intestine and duodenum [13]. It is clear that a variety of signaling 

pathways including sonic hedgehog, Fgf and Wnt are needed for Cdx expression and retinoic acid also 

plays a role in defining the Cdx expression [11]. Expression of dominant-negative RARs in the chick 

endoderm blocks Cdx expression suggesting that there is a direct requirement for RA signaling within 

the endoderm to maintain expression although treatment with RA antagonists does not always eliminate 

Cdx expression and addition of exogenous RA is not able to change the anterior boundary of Cdx 

expression [11]. Subdivision of the Cdx expression domain into different regions such as the large and 

small intestine correspond to expression of different members of the Hox gene cluster and it is likely that 

these are essential for defining the different fates as mutations in different Hox genes do cause gut 

malformations [130]. Given the essential role for RA in directly regulating the Hox gene  

cluster [104,135], it would appear likely that subdivision of the hindgut would be regulated, at least in 

part, by RA. 

Although differentiation of the colon is apparently normal in mice lacking retinoic acid production, 

it is still an important component of colon physiology. In mice lacking Aldh1a1, Aldh1a2, and 

Aldh1a3, there is reduced density of enteric neurons and this reduced innervation results in reduced 

motility of the colon [136,137]. Interestingly, different deletion combinations of the retinaldehyde 

dehydrogenases had varying effects on different subtypes of enteric neurons suggesting that 

understanding the exact roles for RA in gut innervation will be complex. Direct effects on differentiation 

of the intestine have been observed in zebrafish embryos that lack either rdh1l (retinol dehydrogenase) 

or the adenomatous polyposis coli (APC) tumor suppressor gene. The requirement for both is 
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explained by the observation that APC is required for the expression of rdh1l and the loss of markers of 

intestinal differentiation seen when either are suppressed can be rescued by exogenous RA  

treatment [138]. Another retinol dehydrogenase, rdh1, is also required for intestinal differentiation in 

zebrafish but its requirement is restricted to the anterior gut and this corresponds to its graded expression 

pattern with highest levels of expression in the anterior gut [139]. The link to the Hox genes is 

reinforced by this study as over expression of hoxc8, normally regulated by RA, was able to partially 

rescue the differentiation of the intestine. 

The prostate gland is an out pouching of the posterior endoderm and RA is both necessary and 

sufficient for the formation of prostatic buds [140]. Fgf10 is also essential for budding of the  

prostate [141]. This raises the possibility of an RA-Fgf10 axis for bud outgrowth as has been 

demonstrated for the lung. 

6. Definitive Endoderm vs. the Extraembryonic Endoderm Lineage 

It has been nearly 40 years since investigators recognized that mouse teratocarcinoma cells could be 

chemically differentiated into the extraembryonic endoderm (ExEn) lineage [142], recapitulating that 

which develops in the mouse embryo at E4.5 just before implantation (Figure 3) [143,144]. Chemical 

induced differentiation has since been reported for human embryonal carcinoma (EC) cells [145] and 

for human and mouse embryonic stem (ES) cells [146–150]. One of these specific chemicals is RA, 

which is indispensable for embryonic development [2,151] and depending on the context is considered 

an inducer, a morphogen and/or a teratogen to developing embryos. In vitro models, including the F9 

teratocarcinoma cell line have been instrumental in our understanding of retinoid signaling [152], and 

it is well known that when F9 cells are treated with RA, they differentiate as primitive extraembryonic 

endoderm (PrE) [31]. Moreover, RA in combination with agents like dibutyryl cAMP (db-cAMP), 

parathyroid hormone (PTH) or PTH-related peptide (PTHrP), to increase protein kinase A (PKA) activity, 

induce PrE cells to differentiate into parietal endoderm (PE) [142,153–156]. Interestingly, whereas RA 

commits cells to form PrE, in other cases when RA is not used, the commitment is transient when the 

inducing signal is removed [30,157]. Nevertheless, RA treatment leading to differentiation of the 

extraembryonic endoderm lineage is accompanied by the concomitant increase in tissue plasminogen 

activator (tPA) [158] and decrease in the levels of stage-specific embryonic antigen [159], both 

commonly linked to the loss of pluripotency. Growing F9 cells in suspension and in the presence of 

RA also allows for the differentiation of visceral endoderm (VE), which is morphologically and 

biochemically distinct from PE as these cells synthesize alpha-fetoprotein [144,160,161]. 

In addition to the changes in gene expression noted above, EC and ES cells have shed considerable 

light on the fact that ExEn differentiation is accompanied by significant changes in gene expression, 

and this has been reported in several gene-profiling studies [152,162–172], including both positive and 

negative regulation imposed on the RA receptors themselves [173,174]. Although assembling these 

changes in gene regulation into a hierarchy or network has until recent been problematic, integrative 

genomics have nevertheless revealed the diversity of distinct regulatory programs involved in RA 

signaling during F9 cell differentiation [175]. This diversity is even more complex given the epigenetic 

regulation that was identified as playing a role in VE differentiation [176]. A recent review has since 

highlighted the role RA plays in epigenetic mechanisms of stem cell differentiation [177]. Finally, and 
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in addition to these RA-induced epi/genomic changes, there is evidence that cell-cell and cell-matrix 

interactions are also involved in the specification of PE and VE [178], and this is influenced by non-

canonical Wnt signaling [179]. 

 

Figure 3. Formation of extraembryonic endoderm in mouse development. Cells of the 

inner cell mass (yellow), expressing Oct4, Gata6 and Nanog, and those of the 

trophectoderm (grey), expressing Cdx2, are the primary cell populations present prior to 

implantation of the blastocyst. A second round of segregation leads to cells of the epiblast 

(red), which continue to express Nanog and will eventually give rise to the three germ layers 

of the embryo proper, and those committed towards the extraembryonic endoderm lineage 

that express Gata4 and 6, Sox7 and 17, Dab2 and FoxA2. Soon after, cells of the primitive 

extraembryonic endoderm that undergo an epithelial-to-mesenchymal transition, migrate on 

a basement membrane along the trophectoderm and develop as parietal extraembryonic 

endoderm (green). Primitive endoderm cells still associated with the basement membrane 

of the epiblast acquire a cuboidal morphology, and develop into visceral extraembryonic 

endoderm (purple); some of which contributes to definitive endoderm. 

Deciphering these regulatory programs involved in ExEn differentiation has revealed that while 

similarities exist between the differentiation of mouse and human EC cell lines [180], differences even 

between mammalian species preclude formalizing generalizations; the same is also true for ES cells 

between different species [181,182]. Nevertheless, the host of profiling studies mentioned above 

documenting the ability of RA to regulate the expression of a plethora of genes in F9 cells has been 

complemented by several detailed studies on specific genes including Rex-1 [183], laminin B1 [184], 

Mct8 [185], Disabled-2 [186,187] and PTH/PTHrP [188], to name a few. In the case of the latter, and as 

described above, RA exposure followed by subsequent treatment of PTH or PTHrP is sufficient to 

induce F9 cells to form PE [189–191]. PTHrP bound to its G-protein coupled PTH/PTHrP receptor 

(GPCR) stimulates adenylyl cyclase to increase cAMP levels [192]. These and other studies have 

shown that while RA induced differentiation is accompanied by an increase in Ras/ERK activity leading 

to PrE, this activity must be attenuated by increased PKA signaling in order for cells to develop into  
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PE [189,193,194]. Evidence from in vivo expression and localization studies and from work with ES 

cells support this model [195–198]. PTHrP activation of its GPCR also leads to the up-regulation of an 

immediate early target gene encoding the transcriptional repressor Snail1 [199], which accumulates in 

response to the inhibition of Glycogen Synthase Kinase-3 and serves to negatively regulate Cdh1, which 

encodes E-cadherin [200]. This signaling axis has expanded to include other players and it is now generally 

accepted that extensive crosstalk between disparate signaling pathways are necessary for patterning 

ExEn. One of these pathways involves heterotrimeric G-protein signaling activated by RA in F9  

cells [201,202] and in P19 cells [203–207]. Other gene networks induced by RA include, but  

are not limited to thyroid hormone signaling involving monocarboxylate transporters [185] and to  

the positive and negative regulation imparted on the non-canonical and canonical Wnt  

pathways [30,179,201,208–213]; the latter also linked to Snail1 stabilization. 

At the center of all of these signaling pathways involved in the differentiation of the ExEn lineage 

are transcription factors and transcriptional regulators, some which are regulated directly or indirectly 

by RA. This is an ever-increasing pool that includes GATA binding proteins 4 and 6 [214,215], the 

Sry-related HMG-box transcription factor Sox7 and Sox17 [216–220], transcription factor 2,  

Tcf2 (vHnf-1b) [221], FoxA1 (Hnf-3a) [222], FoxA2 (Hnf-3b) [223], Hnf-4 [224] and  

Disabled-2 [225,226]. These and many more have been identified and validated by microarray analysis of 

ExEn isolated from embryos [227]. As with the complexity of the epigenetics introduced earlier, teasing 

apart the intricacies of this transcriptional regulation is convoluted by the fact that these transcription 

factors often regulate the expression of each other, as in the case of Sox7 up-regulating Gata4 and 6 

expression [220], Gata6 activating Gata4 [228], the feed-back and feed-forward loops between 

Disabled-2, Gata4 and Gata6 [226], Tcf2 (vHnf-1b) and Gata6 linked to Hnf-4a1, Hnf1a and Hnf3g 

(FoxA3) expression [221,228], and finally Gata6 inducing FoxA2 [229]. 

Many of the pathways and participating players noted above that induce naïve cells to form the 

ExEn lineage are also known to be involved in patterning the definitive endoderm [13,23,230,231]. 

Towards that end, recent advances with eXtra-embryonic ENdoderm (XEN) cells [232,233], which can 

be induced from ES cells by RA treatment or by overexpressing Gata6 [29,234,235], and with two 

other ExEn cell lines, END2 and PYS2 [236], are slowly unraveling the signals that not only pattern 

extraembryonic and definitive endoderms, but also mesodermal and ectodermal tissues. Epigenetic 

changes known to regulate the differentiation of ES cells, noted earlier, also contribute to defining the 

fate of XEN cells, which has a DNA methylation signature that differs from ES, epiblast or trophoblast 

stem cells [237]. Even within the same XEN cells, the balance and crosstalk between pathways play a 

critical role in dictating the lineage that will differentiate. This is seen in rat XEN cells that form VE 

when canonical Wnt signaling is activated, but develop into PE following the activation of the PTHrP 

pathway [181]. Thus, although much remains to be learned, studying how the ExEn lineage is 

patterned using in vitro models has merit as it has provided the basis for potential therapeutic 

applications of differentiating ExEn into definitive embryonic endoderm [182]. Although RA per se 

may not be necessary in these processes, the importance of retinoid signaling as described above, again 

in combination with several other signaling pathways, is nevertheless crucial in patterning and shaping 

definitive endodermal structures [238]. 
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7. Future Directions 

Although we now know that retinoic acid is absolutely required for the development of most 

endodermal organs, there are several questions that need to be addressed before we fully understand 

the details of its role in the endodermal development. Given the ability of retinoic acid to signal across 

cells, understanding the site of action(s) for retinoic acid remains difficult. For example, patterning of 

the endoderm is in part controlled by the overlying lateral plate mesoderm [77,84] and retinoic acid 

can act on both tissues [53,123]. Evidence from reporters of retinoic acid signaling suggests that it will 

be a combination of both. As more sophisticated genetic models are developed, where Aldh1a2 or the 

RA receptors are eliminated in specific tissues or times, the relative contributions of mesoderm and 

endoderm RA signaling and responses can be addressed. Such models will also be useful in delineating 

the roles of RA at different time periods during development. For example, it is clear that RA is needed 

for precisely positioning the lung along the anterior-posterior axis, for lung bud outgrowth, branching 

morphogenesis and subsequent maturation of the functioning lung. To what degree the later events are 

due to defects in an early process that requires RA signaling, or are later, independent RA signaling 

events can be partially worked out with the careful use of inhibitors but the definitive work with 

conditional knockout animals should be able to tease out different temporal requirements for RA 

signaling. This information is likely critical for better differentiation protocols used to drive stem cells 

into specific endodermal cell types. At present, RA is a key ingredient in most protocols used to drive 

endoderm development [239,240] and the RA is present over multiple differentiation steps. It is 

possible that more regulated timing of the RA signal is necessary for further optimization of 

differentiation protocols and better understanding of the normal development may provide rationales 

for making those changes. 

Retinoic acid does not act alone in regulating tissue differentiation and growth but in most cases, 

our knowledge of the relationship between RA signaling and other pathways remains rudimentary. 

Interactions between RA signaling and other signaling pathways have been well detailed in the  

lung [88] and in the development of the extraembryonic endoderm [201,211] but it remains likely that 

even our understanding of those interactions is limited. It has been suggested that the specificity for 

RA signaling comes from its role in regulating local signaling networks rather than a gradient of retinoic 

acid activating different targets at different concentrations [88] and identifying those local networks 

will be important for a clear understanding of specific roles in individual tissues. Interestingly, one of 

the best documented interactions is the role of retinoic acid is in regulating Fgf10 expression in the  

lung [88] yet this interaction appears to be also linked with the stomach [131] and some non-endoderm 

derived tissues [241,242]. This RA-Fgf10 interaction may represent a module for expansion of the 

tissue rather than specification and is thus used for several organ systems independently. 

Our understanding of the transcriptional targets of RA signaling is also limited. The advent of 

chromatin immunoprecipitation (ChIP) to identify targets has begun [69,70] but in the case of the RA 

receptors, there are clear difficulties that must be overcome. For most targets, the RA receptors will be 

present on the promoter regardless of whether that promoter is transcriptionally active or not and thus 

interpreting the information will require additional epigenetic (ChIP) data at those sites to determine the 

likely transcriptional status associated with specific RAREs. Another technical issue is obtaining the 

starting material from small, localized populations of endodermal organ precursors. This represents a 
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significant challenge but would be necessary to determine the specificity of the development program 

within those early organ systems. However, these are technical challenges that future scientists should be 

able to overcome and the information will provide important new data in our understanding of this 

fascinating signaling system and its role in endodermal development. 
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