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RESEARCH ARTICLE

Expression of Ski Can Act as a Negative
Feedback Mechanism on Retinoic Acid
Signaling
Meaghan A. Melling,1,2 Charlotte R.C. Friendship,1,2 Trevor G. Shepherd,3,4 and
Thomas A. Drysdale1,2,5*

Background: Retinoic acid signaling is essential for many aspects of early development in vertebrates. To
control the levels of signaling, several retinoic acid target genes have been identified that act to suppress
retinoic acid signaling in a negative feedback loop. The nuclear protein Ski has been extensively studied
for its ability to suppress transforming growth factor-beta (TGF-b) signaling but has also been implicated
in the repression of retinoic acid signaling. Results: We demonstrate that ski expression is up-regulated in
response to retinoic acid in both early Xenopus embryos and in human cell lines. Blocking retinoic acid
signaling using a retinoic acid antagonist results in a corresponding decrease in the levels of ski mRNA.
Finally, overexpression of SKI in human cells results in reduced levels of CYP26A1 mRNA, a known target
of retinoic acid signaling. Conclusions: Our results, coupled with the known ability of Ski to repress reti-
noic acid signaling, demonstrate that Ski expression is a novel negative feedback mechanism acting on
retinoic acid signaling. Developmental Dynamics 242:604–613, 2013. VC 2013 Wiley Periodicals, Inc.
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Key fingings:
� Addition of retinoic acid increases Ski transcript levels in Xenopus embryos and mammalian cells.
� Addition of a retinoic acid antagonist results in reduced levels of Ski transcripts in Xenopus embryos and

mammalian cells.
� Addition of retinoic acid appears to directly activate Ski expression.
� Over expression of Ski results in reduced transcript levels of the retinoic acid target gene, Cyp26a1.
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INTRODUCTION

Retinoic acid (RA) is a key signaling

molecule for a wide range of develop-

mental processes (Duester, 2008; Nie-

derreither and Dolle, 2008). The

proper development of the embryo

requires a tight control over both the

spatial localization and levels of RA
signaling. During early embryogene-
sis, it appears that a primary mecha-
nism for controlling both the levels of
RA and its spatial distribution is the
presence of Aldh1a2 (Raldh2), the
enzyme primarily responsible for the
conversion of all-trans retinaldehyde

into RA (Niederreither et al., 1999),
and Cyp26a1, the enzyme primarily
responsible for metabolizing RA to
inactive forms (Sakai et al., 2001).
Loss of either of Aldh1a2 (Nieder-
reither et al., 1999) or Cyp26a1 (Sakai
et al., 2001) results in embryonic
lethality closely resembling, but not
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identical to the effects of loss of RA or
excess RA, respectively (Mark et al.,
2006). Later in development, closely
related enzymes will also regulate RA
levels (Niederreither and Dolle, 2008)
in addition to potential alternate
routes of generating RA (Chambers
et al., 2007).

The expression of Aldh1a2 and
Cyp26a1 can act as part of a negative
feedback loop that responds to
changes in RA levels. Exogenous reti-
noic acid will suppress expression of
Aldh1a2 (Niederreither et al., 1997)
and blocking RA signaling will result
in increased expression. Although
Cyp26 expression does not require
RA, addition of RA greatly increases
expression of Cyp26a1, whereas
reduced levels of RA results in a
marked reduction in expression (Hol-
lemann et al., 1998; de Roos et al.,
1999; Sirbu et al., 2005; Ross and Zol-
faghari, 2011). Negative feedback
loops also extend to the enzymes that
convert retinol to all-trans retinalde-
hyde (Strate et al., 2009; Feng et al.,
2010).

In addition to negative feedback at
the level of RA synthesis and degra-
dation, regulation at the level of sig-
naling has been demonstrated.
Retinoic acid acts by binding to
dimers of specific nuclear receptors,
the retinoid receptors (RARs) and ret-
inoid X receptors (RXRs) that are
bound to target retinoid acid response
elements (RAREs). Binding of the
ligand to the receptor results in a
recruitment of chromatin remodeling
factors that promote activation of
transcription whereas the unbound
receptor complex is bound to repress-
ors of transcription (Xu et al., 1999).
RIP140 is a co-repressor associated
with retinoic acid receptors and is
directly induced by RA (White et al.,
2003; Heim et al., 2007). Expression
of COUP-TF, encoding another nu-
clear receptor is directly induced by
RA and can compete with RAR-RXR
heterodimers on the Cdx1 promoter
thereby acting as a negative feedback
on RA induction of Cdx1 (Beland and
Lohnes, 2005).

Ski has also been associated with
suppression of the RA signaling path-
way through interference with tran-
scription by RARs (Dahl et al., 1998).
Ski is a nuclear protein that has been
associated with several transcription

factors, including Smads and Rb
where it acts as a repressor (Tokitou
et al., 1999; Luo, 2004; Takeda et al.,
2004), and myogenin, where it acts as
an activator (Zhang and Stavnezer,
2009). Both gain of function (Amara-
vadi et al., 1997; Kaufman et al.,
2000) and loss of function (Berk et al.,
1997) experiments suggest multiple
roles for Ski in normal development.

Analysis of acute myeloid leukemia
patients also found that the inability
to respond to RA therapies is corre-
lated with high levels of SKI gene
expression (Teichler et al., 2008) and
suppression of RA signaling by Ski in
COS-1 cells is inhibited when its
NCoR binding domain is deleted (Rit-
ter et al., 2006). Ski also colocalizes
with the repressor protein, HDAC3, a
major component of the co-repressor
complex associated with RARs that
are not bound by ligand. Degradation
of HDAC3 was inhibited by Ski, stabi-
lizing the co-repressor complex associ-
ated with the RAR/RXR dimer bound
to the RARE (Zhao et al., 2009). The
inhibition is attributed to an interac-
tion with Ski and the Seven in Absen-
tia Homologue 2 protein, Siah2, a
component of the E3 ubiquitin ligase
pathway. Functional Siah2 promotes
the degradation of specific proteins,
including HDAC3 (Zhao et al., 2009).
Therefore, it is proposed that Ski
inhibits the degradation of the RA sig-
naling repressor HDAC3 by the E3
ubiquitin ligase pathway, thereby in-
hibiting RA signaling. The Ski-inter-
acting protein (Skip) has also been
implicated in the RA pathway. Skip is
a co-regulator of vitamin D receptor/
RXR signaling, and more recently has
been shown to activate RAR activity
by interacting with and stabilizing
nuclear co-activators and steroid re-
ceptor coactivator (SRC) complexes
(Barry et al., 2003; Kang et al., 2010).
Taken together, these results sug-
gested to us the hypothesis that
expression of ski is a link in a nega-
tive feedback loop on RA signaling.

In this study, we have found that
RA up-regulates ski expression in
both Xenopus embryos and in mam-
malian cell lines. This regulation
appears to be direct and the increased
levels of ski appear to reduce levels of
RA signaling. Coupled with results
from other labs that have demon-
strated the ability of Ski to repress

transcription through RARs, we pro-
vide evidence that Ski can act in a
negative feedback loop to modulate
RA signaling.

RESULTS

Expression of ski in Xenopus

Embryos

Although ski has been studied in Xen-
opus, particularly for its role in sup-
pression of bone morphogenetic
protein (BMP) signaling (Sleeman
and Laskey, 1993; Amaravadi et al.,
1997; Wang et al., 2000; Luo, 2003),
the spatial expression of ski has not
been extensively described. Using
whole-mount in situ hybridization, we
were able to detect ski mRNA in the
mesodermal mantle at the beginning
of gastrulation and we could also find
strong expression in the forming ante-
rior spinal cord and discrete regions
of the head. Later in development,
significant expression can be found in
a variety of sites, including the neural
crest, spinal cord, somites, and otic
vesicle (Fig. 1). The in situ images
suggest that expression may be quite
widespread at a low level, although
the regions of high expression were
very distinct.

Retinoic Acid Causes an

Increase in ski mRNA Levels

in Both Xenopus Embryos

and in Human Cells

If ski expression was part of a nega-
tive feedback loop that can regulate
RA signaling, then exposure to exoge-
nous RA should increase expression
of ski. Xenopus embryos exposed to
1mM RA showed a marked increase in
staining when analyzed by whole-
mount in situ hybridization. This
increase was easily observed after 6–
10 hr of exposure and was observed at
all embryonic stages tested (Fig. 2).
Importantly, treatment with a pan-
RAR antagonist (Teng et al., 1997)
resulted in a corresponding decrease
in ski expression as seen both by in
situ hybridization and real-time poly-
merase chain reaction (PCR) (Fig. 2),
suggesting that RA plays a role in the
regulation of ski expression in vivo.
The veracity of the retinoic acid treat-
ment was confirmed by the marked
induction of cyp26a1 expression by
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RA and loss of expression in the pres-
ence of the RA antagonist (Fig. 2C).
The increase in ski expression
appeared to be in all tissues as the
embryos showed increased expression
throughout the embryo. However,
regions of novel high expression were
also observed. In particular, in control
embryos, there was a consistent gap
in the expression of ski in the spinal
cord and expression of ski in the form-
ing brain. When embryos were
treated with RA, the gap was no lon-
ger present and strong ski expression
was observed along the entire ante-
rior–posterior axis of the nervous sys-
tem (Fig. 3). As might be predicted,

the strong expression in the develop-
ing spinal cord was much reduced
when embryos treated with the RA
antagonist (Fig. 3).

Inhibition of aldh1a2 in embryos
using either citral or diethylamino-
benzaldehyde (DEAB), resulted in
reduced levels of cyp26a1 expression
as expected, although there were
regions that were expression was not
altered such as the tail bud region.
This treatment also resulted in
decreased expression of ski (Supp.
Fig. 1, which is available online). In-
hibition of cyp26a1 by ketoconazole
treatment caused an increase in
cyp26a1 expression but we were not
able to conclude that ski expression

was increased based on the in situ
hybridization results. Taken together,
these results support the conclusion
that ski expression responds to
changes in RA levels under physiolog-
ically relevant conditions.

To test if the increase in ski expres-
sion in response to RA treatment was
a general phenomenon, we examined
ski expression in an immortalized
human keratinocyte (HaCaT) cell line
in response to altered RA signaling.
HaCaT cells were chosen because
they have previously been shown to
respond to both RA (Torma et al.,
1999; Boudjelal et al., 2002) and BMP
(Botchkarev, 2003; Gosselet et al.,
2007) signaling pathways. HaCaT
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Fig. 1. Endogenous expression of ski in Xen-
opus. Ski expression was first detectable in a
ring around the blastopore at stage 10/11. At
stage 20, strong expression was observed in
bands in the forming head in the anterior (ant.)
view There is also staining on the ventral mid-
line immediately posterior to the cement gland
at that stage. In a dorsal view, strong staining
can be seen in the anterior spinal cord (black
arrow) and the staining can be seen even fur-
ther posterior at stage 22. Strong staining was
also observed in the migrating anterior neural
crest (red arrowheads). At tail bud stages (St.
30) low levels of expression are seen over
much of the embryo including somites and
higher expression was still viewed in discrete
regions including the otic vesicle (yellow
arrow).

Fig. 2. Exposure to retinoic acid (RA) causes an increase in ski expression. A: When Xenopus
embryos were exposed to 1mM retinoic acid from stage 14 to 20, stage 20 to 26, or from stage
26 to 32, there was an increase in ski expression as assayed by whole-mount in situ hybridiza-
tion. If embryos were exposed to 1 mM retinoic acid antagonist expression of ski was reduced.
This was particularly evident in the pharyngeal region (red arrows). B: Quantitative reverse tran-
scriptase-polymerase chain reaction (qRT-PCR) for expression of ski in Xenopus embryos
treated as mentioned previously between stages 14–20. Ski is significantly up-regulated in
response to RA and down-regulated in embryos treated with RA antagonist. C: Positive control
quantifying expression of downstream RA signaling target cyp26a1 in response to RA or RA an-
tagonist treatment showing the expected increase and decrease (respectively) in expression.
qRT-PCR is normalized to h4 mRNA levels. mRNA levels were normalized to the h4 housekeep-
ing gene. Error bars represent standard error of the mean. n¼ 5. *P< 0.05 **P< 0.01.
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cells express SKI endogenously and
have previously been used to manipu-
late SKI activity (Denissova and Liu,
2004; Suzuki et al., 2004; Levy et al.,
2007). Using quantitative reverse
transcriptase-polymerase chain reac-
tion (qRT-PCR), a significant increase
(> two-fold) in SKI mRNA levels was
observed after 1 hr and that was
maintained for at least 8 hr after RA
treatment. Treatment with the pan-
RAR antagonist caused a decrease in
endogenous SKI mRNA levels after 4
hr (Fig. 4A). The time course of
changes in SKI mRNA levels was sim-
ilar to changes in the levels of
CYP26A1 mRNA, although the mag-
nitude of change was much greater
with CYP26A1 expression and the
changes were sustained throughout
the 24-hr treatment (Fig. 4B). We

were also able to observe an increase
in levels of SKI protein after treat-
ment with 1 mM RA. The increase
was observed after 8 hr and was sus-
tained to at least 24 hr after exposure
to RA (Fig. 4C).

RA Directly Regulates

Expression of Ski

Given that the changes in ski expres-
sion roughly followed the time course
of changes in cyp26a1 expression, we
investigated whether RA might
directly activate ski expression as it
does cyp26a1. If embryos were cul-
tured in the presence of 1 mM cyclo-
heximide before and during the RA
treatment to block protein synthesis,
we still observed a significant
increase in the expression of ski, as

assayed both by in situ hybridization
and qRT-PCR (Fig. 5). The magnitude
of the change in mRNA levels was
somewhat reduced as compared to
previous experiments because
embryos could only be cultured for 2–
3 hr in cycloheximide due to toxicity.
Again the effectiveness of the RA and
cycloheximide treatment was demon-
strated using expression of cyp26a1, a
known direct target of RA signaling
(Hollemann et al., 1998), as an assay.
The ability of RA to directly activate
ski expression extends to mammalian
cells, as HaCaT cells also up-regu-
lated SKI expression in the presence
of cycloheximide (Fig. 6), although the
magnitude of the change was much
smaller than that observed for
CYP26A1 expression.

If ski acts in a negative feedback
loop that regulates RA signaling, we
would predict that overexpression of
Ski should inhibit the expression of
RA target genes. HaCaT cells were
transiently transfected with 2 mg of
either pCS2-FLAG-cSki or pCS2-
FLAG-Ski-ARPG, encoding a mutant
that is able to inhibit transforming
growth factor b (Tgfb) but not BMP
signaling (Takeda et al., 2004). As
expected, the transfection with the
Ski-FLAG construct resulted in
reduced expression of ID3, a direct
target of BMP signaling expression
(Hollnagel et al., 1999) whereas the
Ski-APRG-FLAG mutant did not.
Using qRT-PCR to quantify CYP26A1
mRNA levels, we found a significant
decrease in CYP26A1 expression in
cells transfected with either the Ski-
FLAG or Ski-APRG-FLAG constructs
when compared with controls (Fig.
7B).

DISCUSSION

RA signaling is essential for multiple
developmental events and the level of
signaling is critical to many of these
events (Duester, 2008; Niederreither
and Dolle, 2008). Given the necessity
for controlling the level of signaling,
it is not surprising that negative feed-
back loops have been identified that
limit the RA signaling once it has
been activated. The majority of the
identified feedback loops act at the
level of ligand availability as exempli-
fied by the expression of aldh1a2 and
cyp26a1 (Niederreither et al., 1997;
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Fig. 3. Different regions of the embryo responded differently to changes in retinoic acid (RA)
signaling. Addition of RA to embryos resulted in a general increase in staining by in situ hybrid-
ization, suggesting that the most cells are responding to the increased signaling. There was a
much greater response at specific sites. In particular, there is a gap in staining in the neural
tube (black arrowheads) roughly corresponding to the hindbrain. Addition of RA resulted in that
region showing very strong expression of ski as assayed by in situ hybridization. The posterior
spinal cord (blue arrow) does not normally have strong expression of ski but does so when RA
is added. When embryos are treated with an RA antagonist, the strong staining in the brain (red
arrow) and spinal cord (yellow arrows) is much reduced. Note that staining in the somites is also
markedly reduced in the antagonist treated embryos. DMSO, dimethyl sulfoxide.
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Hollemann et al., 1998; Strate et al.,
2009; Feng et al., 2010; Ross and Zol-
faghari, 2011). Here we identify the
transcriptional repressor ski as a
novel component of feedback loops on
RA signaling (Fig. 8). Ski expression
is directly up-regulated in response
to addition of RA in both
Xenopus embryos (Figs. 2, 3) and in

mammalian cells (Fig. 4). Impor-
tantly, a normal role for RA in ski
expression is suggested by the reduc-
tion in expression when embryos are
exposed to an RA antagonist (Fig. 2)
or by changes in RA levels caused by
inhibition of aldh1a2, although it is
clear that RA is not the only factor
regulating its expression.

Our results using cycloheximide
suggest that retinoic acid can directly
activate the ski promoter in both Xen-
opus and mammalian cell lines. A
recent analysis of mouse embryonic
stem cells exposed to RA identified
Ski as one of the significantly up-
regulated genes. In addition, that
study used chromatin immunoprecipi-
tation (ChIP) to identify several
enriched binding sites for RARs that
were associated with the transcrip-
tional start site of the two protein
encoding transcripts of Ski
(ENMUST00000030917, ENMUST
00000084103), supporting our obser-
vations that Ski is directly regulated
by RA (Moutier et al., 2012). Given
that more than 10,000 potential bind-
ing sites were identified (Moutier
et al., 2012), confirmation of our sug-
gestion that RA directly regulates Ski
will require ChIP analysis on Xeno-
pus embryos and HaCaT cells fol-
lowed by direct functional analysis of
identified binding sites.

We are also able to show that an
increase in Ski expression is able to
reduce the expression of the RA tar-
get gene cyp26a1 (Fig. 7). To complete
the feedback loop, a mechanism for
the ability of ski to interact with the
RA receptor to reduce RA signaling is
needed and at least one mechanism,
the association with and stabilization
of HDAC3, has been elucidated (Zhao
et al., 2009, 2010). This represents a
similar strategy to transforming
growth factor-beta (TGF-b)/BMP sig-
naling where negative feedback loops
exist that reduce the ability of ligand
by activating expression of noggin,
while expression of Ski can be part of
negative feedback loop at the level of
the nucleus (Massague and Chen,
2000).

Our observations of a general low
level of ski expression in most tissues
with a high levels in the neural tube
and neural crest is in agreement with
that observed in mouse (Lyons et al.,
1994). It is likely that much of the
increase in expression in response to
RA exposure is due to the general
increase in expression throughout the
embryo. The marked increase in ski
expression in specific regions such as
the gap between the spinal cord and
brain staining is more likely due to
changes in tissue patterning rather
than the general increase in ski
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Fig. 4. Retinoic acid (RA) signaling affects SKI expression in vitro. A: Quantitative reverse tran-
scriptase-polymerase chain reaction (qRT-PCR) of HaCaT cells treated for 15 min, 1 hr, 4 hr, 8
hr, or 24 hr with dimethyl sulfoxide (DMSO) control, or 1 mM RA or RA antagonist (RAA) quanti-
fying changes in levels of SKI mRNA. B: Positive control of similarly treated cells quantifying
known downstream direct RA signaling target CYP26A1. mRNA levels were normalized to
GAPDH expression. C: Western blot showing increase in SKI protein levels in response to RA
treatment expression. Increases were noted after 8 hours of treatment compared with the con-
trol ACTIN levels. Error bars represent standard error of the mean. n¼ 5. *P< 0.05, **P< 0.01.
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expression. Posteriorization of ante-
rior neural identities is a known
result of exposure to RA in Xenopus
(Sharpe, 1991; Chen et al., 2001).

The changes in ski expression that
we observed were much smaller than
the changes observed for the expres-
sion of cyp26a1. The greater response
by cyp26a1 may be necessary due to
the different mechanisms used to in-
hibit RA signaling. Cyp26a1 acts to
catabolize retinoic acid and may be
required at higher levels to have
enough activity to reduce RA levels
significantly. By acting within the nu-
cleus to disrupt RA signaling, ski may
be able to act faster to modulate RA
signaling or perhaps be required at
relatively low levels. Rip140 (Nrip1)
is another nuclear co-repressor that
acts in a negative feedback loop to
suppress RA signaling (Heim et al.,
2007). Rather than simply inhibiting
the RA receptor, Rip140 expression
oscillates with time and also plays a
role in fine tuning the oscillatory
expression of other RA target genes
(Heim et al., 2009).

In mice, the loss of Ski results in a
wide variety of defects including exen-
cephaly, facial clefting, reduced skele-
tal muscle mass, abnormal
skeletogenesis, and ocular defects
(Berk et al., 1997; McGannon et al.,
2006). While it is tempting to attrib-
ute some of these observed defects to
excess RA signaling, the ability of Ski
to also modulate the activity of other
key genes that regulate development,
such as TGF-b and BMP signaling
(Luo et al., 1999; Takeda et al., 2004),
makes it extremely difficult to single
out a single pathway. Indeed, the up-
regulation of Ski by retinoic acid
could result in modulation of the ac-
tivity of other pathways where Ski
plays a role, representing a potential
direct cross-talk between key develop-
mental pathways. If some of the Ski
loss of function phenotypes in mice
(Berk et al., 1997; Colmenares et al.,
2002) can be attributed to an increase
in RA signaling, it is clearly different
than the phenotype observed when
Cyp26a1 is lost. In Cyp26a1 knock-
outs, mice exhibit severe truncations

at the posterior end of the embryo in
addition to homeotic mutations (Sakai
et al., 2001), suggesting that the abil-
ity of Ski to suppress RA signaling is
not as potent as that of Cyp26a1.

Our experiments demonstrate that,
in addition to being able to repress
RA signaling, expression of Ski is at
least partially regulated by RA. This
provides a novel negative feedback
loop on RA signaling and a potential
mechanism for cross-talk between im-
portant developmental pathways. The
challenge in future will be to deter-
mine the relative roles of these feed-
back mechanisms in both
development and disease.

EXPERIMENTAL

PROCEDURES

Embryo Manipulations

Female Xenopus females were
induced to ovulate by injection of
500–600 IU of human chorionic go-
nadotropin depending on the size of
the animal and eggs were fertilized
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Fig. 5. Retinoic acid (RA) signaling directly alters ski expression in vivo. A: Whole-mount in situ hybridization of embryos pretreated with 20 min
of 1 mM cycloheximide to block translation followed by 1 hr treatment with 1 mM RA. In a dorsal view, embryos treated from St. 14–16 showed
increased staining with RA even in the presence of cycloheximide. Embryos treated from St. 26–28 (side view) showed the same result. B: Quanti-
tative reverse transcriptase-polymerase chain reaction (qRT-PCR) of similarly treated embryos between stages 14 and 16 showed that ski expres-
sion is up-regulated by RA even in the presence of cycloheximide. C: qRT-PCR analysis of cyp26a1, a known direct target of RA signaling, was
used as a positive control for the RA and cycloheximide treatments. Error bars represent standard error of the mean. n¼5. *P< 0.05, **P< 0.01,
***P< 0.001.
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using minced testes in 80% Stein-
berg’s solution. Embryos were dejel-
lied in 2.5% cysteine, pH 8.0, and
allowed to develop to the specified
stage in 20% Steinberg’s solution and
embryos were staged according to the
Nieuwkoop and Faber staging table
(Nieuwkoop and Faber, 1994).

Embryos were treated in 20% Stein-
berg’s solution at various stages using
1 mM all-trans retinoic acid (RA)
(Sigma), or 1 mM pan-retinoic acid an-
tagonist (RAA) (Allergan 193109;
Teng et al., 1997) both diluted from a
1mM stock solution in dimethyl sulf-
oxide (DMSO). Thus, 1ml/ml DMSO
was used as a carrier control. Protein
synthesis was inhibited using 1mM
cycloheximide (Moreno and Kintner,
2004). When testing the effect of
blocking protein synthesis in conjunc-
tion with RA treatments, the cyclo-
heximide was added for 20 min before
RA addition followed by 1-hr treat-
ments with either DMSO or 1mM

all-trans RA in the presence of the
cycloheximide.

Inhibition of aldh1a2 was done by
treatment with either 20 mM diethy-
laminobenzaldehyde (DEAB) (Cartry
et al., 2006) or 120 mM citral (Bege-
mann et al., 2004). Inhibition of cyp26
was done using 50 mM ketoconazole
(Lutz et al., 2001). Both inhibitor
treatments were from embryonic
stage 20 to 28 at which time the
embryos were fixed for in situ hybrid-
ization. As with the retinoid treat-
ments, the carrier control for the
inhibitors was 1 ml/ml DMSO.

In Situ Hybridization

Whole-mount in situ hybridizations
were performed according to standard
protocols (Harland, 1991) with slight
modifications (Deimling and Dry-
sdale, 2009). Antisense riboprobes for
ski (Amaravadi et al., 1997) and
cpy26a1 (Hollemann et al., 1998)
were labeled with digoxigenin-UTP
(Roche Diagnostics) without incorpo-
ration of radio-labeled nucleotides.
BM Purple (Roche Diagnostics) was
used as the alkaline phosphate

substrate. Embryos were post-fixed in
4% paraformaldehyde for 20 min and
endogenous pigment was bleached
using 0.5% hydrogen peroxide, 5%
formamide, and 0.5% standard saline
citrate for several hours. Embryo
images were obtained using Northern
Eclipse software (Empix Imaging,
Mississauga, Canada) on a Leica
MZ12 dissecting microscope.
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CYP26A1. A: Western blot (anti-FLAG) confirming protein synthesis from the Ski and Ski-APRG
constructs after transfection into HaCaT cells. B: Quantitative reverse transcriptase-polymerase
chain reaction (qRT-PCR) quantifying the levels CYP26A1 mRNA shows a decreased level of
expression after transfection with either Ski construct. C: qRT-PCR of similarly transfected cells
quantifying the levels of ID3 mRNA, a target of bone morphogenetic protein (BMP) signaling,
showing that there is decreased levels of expression with Ski over expression but not with over
expression of the Ski-APRG construct. Error bars represent standard error of the mean. mRNA
levels were normalized to the GAPDH mRNA levels. n¼ 3. *P< 0.05, **P< 0.01.

Fig. 6. Retinoic acid (RA) signaling directly
regulates ski expression in HaCaT cells. A:
Quantitative reverse transcriptase-polymerase
chain reaction (qRT-PCR) of HaCaT cells
treated for 20 min with 1 mM cycloheximide
followed by 1 hr with 1 mM RA demonstrates
that RA significantly increases ski expression
even in the presence of cycloheximide in the
same manner as cyp26a1, a known direct tar-
get of RA signaling (B). Error bars represent
standard error of the mean. n¼ 5. *P< 0.05,
**P< 0.01.

Fig. 8. A proposed model of retinoic acid
(RA) signaling negative feedback loops. The
best understood feedback loop is when RA
directly activates genes that encode enzymes
that reduce the level of retinoic acid as exem-
plified by cyp26a1. Our results suggest that
RA can also activate genes such as ski allow-
ing ski to act at the level of the RA receptors
to attenuate signaling.

610 MELLING ET AL.



Xenopus qRT-PCR

A total of eight embryos were used
per treatment group. Embryos were
homogenized at earlier stages (<
stage 26) using the lysis buffer pro-
vided in the Qiagen RNeasy mini Kit
according to manufacturer’s instruc-
tions. Later staged embryos used a
homogenization buffer consisting of 4
M guanidine thiocyanate, 25 mM so-
dium citrate, 0.5% N-lauroyl-sarco-
sine, and 0.1 M b-mercaptoethanol.
After homogenization, 1/10th of the
volume of 2 M sodium acetate (pH 4)
was added followed by a 1:1 volume of
phenol:chloroform. This was then cen-
trifuged for 5 min at 14K. The aque-
ous phase was removed, placed in a
fresh tube and 2.5� the volume of
70% ethanol was added. This solution
was placed in the Qiagen RNeasy
spin columns and the RNA purified
according to manufacturer’s instruc-
tions. RNA concentration and quality
was then measured using a spectro-
photometer and a 1% agarose in TAE
gel containing ethidium bromide.
cDNA was synthesized using Super-
script II Reverse Transcriptase (Invi-
trogen) with OligodT12–16 primers
(Invitrogen) and RNase Out (Invitro-
gen). Xenopus RNA (500 mg) was iso-
lated and used in the RT reaction.
Primers for qPCR were designed
using Primer3 or published primer
sequences were used as cited: Xeno-
pus ski - F: TGTGACAAAGGCTGTG
AAGC, R: CAGAGCTGTTCCTGG
AGGTC, Xenopus cyp26a1 – F: GCT
GCCACGTCCCTCACCTCTT R: GCC
GATGCAGCACCTCACTCCA, Xeno-
pus id3 – F: AAAGCCATCAGCCC
AGTG, R: AGTGGCAGACGCTGG
TGT (Nichane et al., 2008), Xenopus
hist1h4a - F: CGGGATAACATTCAG
GGTA R: TCCATGGCGGTAACTGTC
(Sindelka et al., 2006). In a study of
housekeeping genes in Xenopus, it
was also found that normalization
using these genes was problematic
(Sindelka et al., 2006) but identified
hist1h4a as giving the most consist-
ent results other than simply using
total RNA. Our tests supported this
finding; thus, hist1h4a mRNA levels
were used to normalize qPCR data.

qPCR was performed according to
manufacturer’s protocols for Brilliant
SYBR Green Master mix (Agilent
Stratagene). The denaturation

temperature was 94
�
C, with an

annealling temperature of 55
�
C and

elongation at 72
�
C. All qPCR experi-

ments used a minimum of three rang-
ing to a maximum of five replicates.
All statistics were performed with
GraphPad Prism4 using a one-way
analysis of variance (ANOVA) and a
95% confidence interval with a post
hoc Tukey’s test.

Cell Culture

Human keratinocyte (HaCaT) cells
were grown in 5% fetal bovine serum
(FBS) (Wisent) in DMEM, 5% CO2 at
37

�
C reaching approximately 75–80%

confluence before RNA and protein
isolation. HaCaT cells were incubated
for 18 hr before treatment with 5%
charcoal-stripped serum in DMEM.
The cells were then treated using 1
mM all-trans RA or 1 mM pan-RA an-
tagonist (Allergan 193109; Teng et al.,
1997) dissolved in DMSO. A 1 ml/ml
DMSO treatment was used as a car-
rier control. RNA was isolated using
the Qiagen RNeasy mini Kit accord-
ing to manufacturer’s instructions.
RNA concentration and quality was
measured using a Nanodrop spectro-
photometer and also visualized using
a 1% agarose in TAE gel containing
ethidium bromide. Transfection of
plasmids was done using Lipofect-
amine according to manufacturers’
instructions.

cDNA was synthesized using Super-
script II Reverse Transcriptase (Invi-
trogen) with Oligo dT12–16 primers
(Invitrogen). Primers for qPCR
included SKI F: AAAGAGCTCTCCC
CACACCT, R: GGGTGTCCACAGT
CAGCTTC (designed using Primer3);
CYP26A1 F: TTTGGAGGACACGA
AACCAC, R: CAGCATGAATCGGTC
AGGAT (Zaitseva et al., 2007); ID3 F:
TGGTTTTCTTTCTCTTTGGGG, R:
CGGGAGTAGCAGTGGTTCAT; GA
PDH F: CATGAGAAGTATGACAAC
AGC, R: AGTCCTTCCACGATACCAA
AG (Lin et al., 2005).

Using DMEM media without serum
in six-well plates (Fisher Scientific),
HaCaT cells were transfected with 2
mg plasmid DNA using Lipofectamine
(Invitrogen). Cells were assayed after
24 hr. Cells were rinsed twice in cold
phosphate buffered saline (PBS) and
lysed with RIPA buffer containing 1
mM sodium vanadate, 10 mM sodium

pyrophosphate, 10 mM NaF, 1 mM
phenylmethylsulfonyl fluoride
(PMSF), and 4% protease inhibitor
cocktail (Sigma). For Western blots of
the Flag-tagged Ski products, 100 mg
of protein were loaded per lane and
separated on a 7.5% polyacrylamide
gel followed by transfer to polyvinyli-
dene fluoride (PVDF) membrane. Pri-
mary antibodies used for Western
blots were Anti-FLAG (ThermoScien-
tific) and anti-b-actin (Santa Cruz).
The protein on the membrane then
was probed with horseradish peroxi-
dase (HRP) -coupled secondary anti-
bodies and detected using the
LumiGLO Chemiluminescent Kit
(KPL) on a Versadoc gel documenta-
tion system.

To detect endogenous SKI in
HaCaT cells after RA exposure, cells
were seeded to 6-cm culture dishes at
5 � 105 cells and the following day
media was replaced with charcoal-
stripped serum-containing media. On
the following day, cells were treated
with 1 mM RA and total protein was
isolated using RIPA lysis buffer con-
taining protease inhibitors. Western
blotting was performed on 50 mg total
protein using anti-Ski antibody
(Kamiya Biomedical, clone G8,
1:1,000 dilution in 5% bovine serum
albumin/Tris buffered saline [TBS]-
Tween 20) incubated overnight at 4

�
C

followed by detection using anti-
mouse IgG-HRP secondary antibody
(GE Healthcare). Anti-actin antibody
(1:1,000 in 5% skim milk/TBS-Tween
20; Sigma) and anti-rabbit IgG-HRP
secondary antibody (GE Healthcare)
were used to control for protein load-
ing. Chemiluminescence detection
was performed using Luminata Forte
Western HRP Substrate (Millipore)
and the BioRad ChemiDoc MP Imag-
ing System.
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