16 research outputs found

    Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 363–378, doi:10.1002/2014JF003180.Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the short- and long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the surface energy budget, soil moisture, and the organic-layer thickness with the overall effect of increasing soil temperatures and thaw depth. The postfire thickness of the soil organic layer and its impact on soil thermal conductivity was the most important factor determining postfire soil temperatures and thaw depth. Boreal and tundra ecosystems underlain by permafrost experienced smaller postfire soil temperature increases than the nonpermafrost boreal forest from the direct and indirect effects of permafrost on drainage, soil moisture, and vegetation flammability. Permafrost decreased the loss of the insulating soil organic layer, decreased soil drying, increased surface water pooling, and created a significant heat sink to buffer postfire soil temperature and thaw depth changes. Ecosystem factors also played a role in determining postfire thaw depth with boreal forests taking several decades longer to recover their soil thermal properties than tundra. These factors resulted in tundra being less sensitive to postfire soil thermal changes than the nonpermafrost boreal forest. These results suggest that permafrost and soil organic carbon will be more vulnerable to fire as climate warms.We are pleased to acknowledge funding from the US National Science Foundation, grants DEB-1026843 and EF-1065587, to the Marine Biological Laboratory. Additional logistical support was provided by Toolik Field Station and CH2MHill, funded by NSF's Office of Polar Programs.2015-08-2

    Review of the analysis of Th-234 in small volume (2-4 L) seawater samples: improvements and recommendations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clevenger, S. J., Benitez-Nelson, C. R., Drysdale, J., Pike, S., Puigcorbe, V., & Buesseler, K. O. Review of the analysis of Th-234 in small volume (2-4 L) seawater samples: improvements and recommendations. Journal of Radioanalytical and Nuclear Chemistry, 329(1), (2021): 1–13, https://doi.org/10.1007/s10967-021-07772-2.The short-lived radionuclide 234Th is widely used to study particle scavenging and transport from the upper ocean to deeper waters. This manuscript optimizes, reviews and validates the collection, processing and analyses of total 234Th in seawater and suggests areas of further improvements. The standard 234Th protocol method consists of scavenging 234Th from seawater via a MnO2 precipitate, beta counting, and using chemical recoveries determined by adding 230Th. The revised protocol decreases sample volumes to 2 L, shortens wait times between steps, and simplifies the chemical recovery process, expanding the ability to more rapidly and safely apply the 234Th method.The authors would like to acknowledge support from the National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program awards 80NSSC17K0555; and the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for KOB and SJC

    Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid—‘Ashwagandha’ in Prostate Cancer Cells

    Get PDF
    Phytochemicals are dietary phytoestrogens that may play a role in prostate cancer prevention. Forty percent of Americans use complementary and alternative medicines (CAM) for disease prevention and therapy. Ashwagandha (Withania somnifera) contains flavonoids and active ingredients like alkaloids and steroidal lactones which are called ‘Withanolides’. We hypothesize that the immunomodulatory and anti-inflammatory properties of Ashwagandha might contribute to its overall effectiveness as an anti-carcinogenic agent. The goal of our study was gain insight into the general biological and molecular functions and immunomodulatory processes that are altered as a result of Ashwagandha treatment in prostate cancer cells, and to identify the key signaling mechanisms that are involved in the regulation of these physiological effects using genomic microarray analysis in conjunction with quantitative real-time PCR and western blot analysis. Ashwagandha treatment significantly downregulated the gene and protein expression of proinflammatory cytokines IL-6, IL-1β, chemokine IL-8, Hsp70 and STAT-2, while a reciprocal upregulation was observed in gene and protein expression of p38 MAPK, PI3K, caspase 6, Cyclin D and c-myc. Furthermore, Ashwagandha treatment significantly modulated the JAK-STAT pathway which regulates both the apoptosis process as well as the MAP kinase signaling. These studies outline several functionally important classes of genes, which are associated with immune response, signal transduction, cell signaling, transcriptional regulation, apoptosis and cell cycle regulation and provide insight into the molecular signaling mechanisms that are modulated by Ashwagandha, thereby highlighting the use of this bioflavanoid as effective chemopreventive agent relevant to prostate cancer progression

    Comparison of methods for predicting COVID-19-related death in the general population using the OpenSAFELY platform.

    Get PDF
    BACKGROUND: Obtaining accurate estimates of the risk of COVID-19-related death in the general population is challenging in the context of changing levels of circulating infection. METHODS: We propose a modelling approach to predict 28-day COVID-19-related death which explicitly accounts for COVID-19 infection prevalence using a series of sub-studies from new landmark times incorporating time-updating proxy measures of COVID-19 infection prevalence. This was compared with an approach ignoring infection prevalence. The target population was adults registered at a general practice in England in March 2020. The outcome was 28-day COVID-19-related death. Predictors included demographic characteristics and comorbidities. Three proxies of local infection prevalence were used: model-based estimates, rate of COVID-19-related attendances in emergency care, and rate of suspected COVID-19 cases in primary care. We used data within the TPP SystmOne electronic health record system linked to Office for National Statistics mortality data, using the OpenSAFELY platform, working on behalf of NHS England. Prediction models were developed in case-cohort samples with a 100-day follow-up. Validation was undertaken in 28-day cohorts from the target population. We considered predictive performance (discrimination and calibration) in geographical and temporal subsets of data not used in developing the risk prediction models. Simple models were contrasted to models including a full range of predictors. RESULTS: Prediction models were developed on 11,972,947 individuals, of whom 7999 experienced COVID-19-related death. All models discriminated well between individuals who did and did not experience the outcome, including simple models adjusting only for basic demographics and number of comorbidities: C-statistics 0.92-0.94. However, absolute risk estimates were substantially miscalibrated when infection prevalence was not explicitly modelled. CONCLUSIONS: Our proposed models allow absolute risk estimation in the context of changing infection prevalence but predictive performance is sensitive to the proxy for infection prevalence. Simple models can provide excellent discrimination and may simplify implementation of risk prediction tools

    Proceedings of the Virtual 3rd UK Implementation Science Research Conference : Virtual conference. 16 and 17 July 2020.

    Get PDF

    Results of an Ocean Trial of the Symbiotic Machine for Ocean Uranium Extraction

    No full text
    Amidoxime-based adsorbents have become highly promising for seawater uranium extraction. However, current deployment schemes are stand-alone, intermittent operation systems that have significant practical and economic challenges. This paper presents two 1:10 scale prototypes of a Symbiotic Machine for Ocean uRanium Extraction (SMORE) which pairs with an existing offshore structure. This pairing reduces mooring and deployment costs while enabling continuous, autonomous uranium extraction. Utilizing a shell enclosure to decouple the mechanical and chemical requirements of the adsorbent, one design concept prototyped continuously moves the shells through the water while the other keeps them stationary. Water flow in the shells on each prototype was determined using the measurement of radium adsorbed by MnO 2 impregnated acrylic fibers contained within each enclosure. The results from a nine-week ocean trial show that while movement of the shells through the water may not have an effect on uranium adsorption by the fibers encased, it could help reduce biofouling if above a certain threshold speed (resulting in increased uptake), while also allowing for the incorporation of design elements to further mitigate biofouling such as bristle brushes and UV lamps. The trace metal uptake by the AI8 adsorbents in this trial also varied greatly from previous marine deployments, suggesting that uranium uptake may depend greatly upon the seawater concentrations of other elements such as vanadium and copper. The results from this study will be used to inform future work on the seawater uranium production cost from a full-scale SMORE system.U.S. Department of Energy Office of Nuclear Energy (Contracts DE-NE0008268 and DE-NE000731

    Effects of Protective Shell Enclosures on Uranium Adsorbing Polymers

    No full text
    This study aims to evaluate the impact of shell enclosures on the uranium uptake of amidoxime-based polymeric adsorbents contained within. Researchers have observed that the tensile strength of the adsorbent's polyethylene backbone is degraded after γ-irradiation to induce grafting of the amidoxime ligand. A two-part system was developed to decouple the mechanical and chemical requirements of the adsorbent by encapsulating them in a hard, permeable shell. The water flow in six shell designs and an unenclosed adsorbent for control in a recirculating flume was analyzed via a novel method developed using the measurement of radium extracted onto MnO2 impregnated acrylic fibers. Although the water flow was found to vary with enclosure design, orientation to the flow, and placement within the flume, little to no difference was observed in the uranium adsorption rate between all enclosures. The results of this study will be used to design a large-scale ocean deployment of a uranium harvesting system.U.S. Department of Energy (Contracts DE-NE0008268 and DE-NE000731

    Distribution and Evolution of Fukushima Dai-ichi derived 137Cs, 90Sr, and 129I in Surface Seawater off the Coast of Japan

    Get PDF
    The Fukushima Dai-ichi Nuclear Power Plants (FDNPPs) accident in 2011 led to an unprecedented release of radionuclides into the environment. Particularly important are 90Sr and 137Cs due to their known health detriments and long half-lives (T1/2 ≈ 30 y) relative to ecological systems. These radionuclides can be combined with the longer-lived 129I (T1/2 = 15.7 My) to trace hydrologic, atmospheric, oceanic, and geochemical processes. This study seeks to evaluate 137Cs, 90Sr, and 129I concentrations in seawater off the coast of Japan, reconcile the sources of contaminated waters, and assess the application of 137Cs/90Sr, 129I/137Cs, and 129I/90Sr as oceanic tracers. We present new data from October 2015 and November 2016 off the coast of Japan, with observed concentrations reaching up to 198 ± 4 Bq·m–3 for 137Cs, 9.1 ± 0.7 Bq·m–3 for 90Sr, and (114 ± 2) × 10–5 Bq·m–3 for 129I. The utilization of activity ratios suggests a variety of sources, including sporadic and independent releases of radiocontaminants. Though overall concentrations are decreasing, concentrations are still elevated compared to pre-accident levels. In addition, Japan’s Environment Minister has suggested that stored water from the FDNPPs may be released into the environment and thus continued efforts to understand the fate and distribution of these radionuclides is warranted.ISSN:0013-936XISSN:1520-585
    corecore