47 research outputs found

    Investment shell cracking

    Get PDF
    Shell cracking is the single greatest problem affecting investment casters. A clearer understanding of the factors affecting the melt profile of the wax can be gained using computational fluid dynamics (CFD) to model the interaction among 1) the thermal conductivity of the wax, 2) the thermal conductivity of the shell, and 3) the temperature of the autoclave during the autoclave de-waxing cycle. The most favorable melt profile results from a high autoclave temperature (438⁰K to 458⁰K) and saturated thermal conductivity of the shell (1.36 to 1.40 Wm⁻¹k⁻¹) in conjunction with a low wax thermal conductivity (0.33 Wm⁻¹k⁻¹). These parameters reduce the likelihood of shell cracking as a result of wax bulk expansion --Abstract, page iv

    Role of Stem Cells in Human Uterine Leiomyoma Growth

    Get PDF
    Uterine leiomyoma is the most common benign tumor in reproductive-age women. Each leiomyoma is thought to be a benign monoclonal tumor arising from a single transformed myometrial smooth muscle cell; however, it is not known what leiomyoma cell type is responsible for tumor growth. Thus, we tested the hypothesis that a distinct stem/reservoir cell-enriched population, designated as the leiomyoma-derived side population (LMSP), is responsible for cell proliferation and tumor growth.LMSP comprised approximately 1% of all leiomyoma and 2% of all myometrium-derived cells. All LMSP and leiomyoma-derived main population (LMMP) but none of the side or main population cells isolated from adjacent myometrium carried a mediator complex subunit 12 mutation, a genetic marker of neoplastic transformation. Messenger RNA levels for estrogen receptor-α, progesterone receptor and smooth muscle cell markers were barely detectable and significantly lower in the LMSP compared with the LMMP. LMSP alone did not attach or survive in monolayer culture in the presence or absence of estradiol and progestin, whereas LMMP readily grew under these conditions. LMSP did attach and survive when directly mixed with unsorted myometrial cells in monolayer culture. After resorting and reculturing, LMSP gained full potential of proliferation. Intriguingly, xenografts comprised of LMSP and unsorted myometrial smooth muscle cells grew into relatively large tumors (3.67 ± 1.07 mm(3)), whereas xenografts comprised of LMMP and unsorted myometrial smooth muscle cells produced smaller tumors (0.54 ± 0.20 mm(3), p<0.05, n = 10 paired patient samples). LMSP xenografts displayed significantly higher proliferative activity compared with LMMP xenografts (p<0.05).Our data suggest that LMSP, which have stem/reservoir cell characteristics, are necessary for in vivo growth of leiomyoma xenograft tumors. Lower estrogen and progesterone receptor levels in LMSP suggests an indirect paracrine effect of steroid hormones on stem cells via the mature neighboring cells

    Diffusion-Controlled Decohesion Using a Cu-Sn Alloy as a Model System

    No full text
    This research deals with a mode of brittle intergranular fracture in which a surface adsorbed embrittling element is driven into a grain boundary as a result of the application of a tensile stress across the boundary. A Cu-8%Sn alloy has been employed to explore this phenomenon, since tin is a surface-active element, and this alloy is known to suffer intergranular weakness at elevated temperatures. Intergranular cracking occurred by brittle, discontinuous crack advance at 265{degrees}C in vacuum with an average rate of 0.1{mu}m/sec. This behavior is analogous to sulfur-induced stress-relief cracking in steels and several cases of liquid-metal embrittlement, suggesting that this phenomenon has a generic nature

    Mechanical and Material Properties of Castings Produced via 3D Printed Molds

    No full text
    Additive manufacture of sand molds via binder jetting enables the casting of complex metal geometries. Various material systems have been created for 3D printing of sand molds; however, a formal study of the materials’ effects on cast products has not yet been conducted. In this paper the authors investigate potential differences in material properties (microstructure, porosity, mechanical strength) of A356 – T6 castings resulting from two different commercially available 3D printing media. In addition, the material properties of cast products from traditional “no-bake” silica sand is used as a basis for comparison of castings produced by the 3D printed molds. It was determined that resultant castings yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength and differed in sand tensile strength, hardness, and density
    corecore