1,722 research outputs found

    Contrasting the capabilities of building energy performance simulation programs

    Get PDF
    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability

    Self-Similar Evolution of Cosmic-Ray Modified Shocks: The Cosmic-Ray Spectrum

    Get PDF
    We use kinetic simulations of diffusive shock acceleration (DSA) to study the time-dependent evolution of plane, quasi-parallel, cosmic-ray (CR) modified shocks. Thermal leakage injection of low energy CRs and finite Alfv\'en wave propagation and dissipation are included. Bohm diffusion as well as the diffusion with the power-law momentum dependence are modeled. As long as the acceleration time scale to relativistic energies is much shorter than the dynamical evolution time scale of the shocks, the precursor and subshock transition approach the time-asymptotic state, which depends on the shock sonic and Alfv\'enic Mach numbers and the CR injection efficiency. For the diffusion models we employ, the shock precursor structure evolves in an approximately self-similar fashion, depending only on the similarity variable, x/(u_s t). During this self-similar stage, the CR distribution at the subshock maintains a characteristic form as it evolves: the sum of two power-laws with the slopes determined by the subshock and total compression ratios with an exponential cutoff at the highest accelerated momentum, p_{max}(t). Based on the results of the DSA simulations spanning a range of Mach numbers, we suggest functional forms for the shock structure parameters, from which the aforementioned form of CR spectrum can be constructed. These analytic forms may represent approximate solutions to the DSA problem for astrophysical shocks during the self-similar evolutionary stage as well as during the steady-state stage if p_{max} is fixed.Comment: 38 pages, 12 figures, ApJ accepte

    The Density Spike in Cosmic-Ray-Modified Shocks: Formation, Evolution, and Instability

    Get PDF
    We examine the formation and evolution of the density enhancement (density spike) that appears downstream of strong, cosmic-ray-modified shocks. This feature results from temporary overcompression of the flow by the combined cosmic-ray shock precursor/gas subshock. Formation of the density spike is expected whenever shock modification by cosmic-ray pressure increases strongly. That occurence may be anticipated for newly generated strong shocks or for cosmic-ray-modified shocks encountering a region of higher external density, for example. The predicted mass density within the spike increases with the shock Mach number and with shocks more dominated by cosmic-ray pressure. We find this spike to be linearly unstable under a modified Rayleigh-Taylor instability criterion at the early stage of its formation. We confirm this instability numerically using two independent codes based on the two-fluid model for cosmic-ray transport. These two-dimensional simulations show that the instability grows impulsively at early stages and then slows down as the gradients of total pressure and gas density decrease. Observational discovery of this unstable density spike behind shocks, possibly through radio emission enhanced by the amplified magnetic fields would provide evidence for the existence of strongly cosmic-ray modified shock structures.Comment: 26 pages in Latex and 6 figures. Accepted to Ap

    The Littlewood-Gowers problem

    Full text link
    We show that if A is a subset of Z/pZ (p a prime) of density bounded away from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier transform) of the characterstic function of A is bounded below by an absolute constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references

    Comparison of Different Methods for Nonlinear Diffusive Shock Acceleration

    Full text link
    We provide a both qualitative and quantitative comparison among different approaches aimed to solve the problem of non-linear diffusive acceleration of particles at shocks. In particular, we show that state-of-the-art models (numerical, Monte Carlo and semi-analytical), even if based on different physical assumptions and implementations, for typical environmental parameters lead to very consistent results in terms of shock hydrodynamics, cosmic ray spectrum and also escaping flux spectrum and anisotropy. Strong points and limits of each approach are also discussed, as a function of the problem one wants to study.Comment: 26 pages, 4 figures, published version (references updated

    Density and Richness of Benthic Invertebrate Populations in the North Sydenham River of Southwestern Ontario (1996-2000) Compared with Those of the St. Clair River (1990-1995)

    Get PDF
    Richness (the number of invertebrate families/sample site) and density (the number of invertebrates/sq m) of benthic populations in the North Sydenham River were measured and compared with similar estimates for the St. Clair River. Seventeen sample sites were examined from May to October over five consecutive years. At each sample site, particle size distribution of the sediment, sediment temperature, total phosphorous, total nitrogen, total carbon, and water flow rate were measured. Physical and chemical characteristics of the North Sydenham system over the 100 km run examined were less variable than those of the St. Clair. Statistically significant but weak multiple linear correlations were found for richness and density with several of the measured variables. Invertebrate populations in the North Sydenham River were less rich and less dense than those in the downstream reach of the St. Clair and exhibited a different distribution of abundance among the orders of organisms. As in the St. Clair River, some evidence of long term cycling of abundance in several families of invertebrates was found in the North Sydenham

    Rayleigh-Taylor Instabilities in Young Supernova Remnants Undergoing Efficient Particle Acceleration

    Get PDF
    We employ hydrodynamic simulations to study the effects of high shock compression ratios, as expected for fast shocks with efficient particle acceleration, on the convective instability of driven waves in supernova remnants. We find that the instability itself does not depend significantly on the compression ratio, but because the width of the interaction region between the forward and reverse shocks can shrink significantly with increasing shock compression, we find that convective instabilities can reach all the way to the forward shock front if compression ratios are high enough.Comment: Submitted to The Astrophysical Journa

    Large Scale Proactive Power-Quality Monitoring: An Example from Australia

    Get PDF
    In Australia and many other countries, distribution network service providers (DNSPs) have an obligation to their customers to provide electrical power that is reliable and of high quality. Failure to do so may have significant implications ranging from financial penalties theoretically through to the loss of a license to distribute electricity. In order to ensure the reliability and quality of supply are met, DNSPs engage in monitoring and reporting practice. This paper provides an overview of a large long-running power-quality monitoring project that has involved most of Australia\u27s DNSPs at one time or another. This paper describes the challenges associated with conducting the project as well as some of the important outcomes and lessons learned. A number of novel reporting techniques that have been developed as part of the monitoring project are also presented. A discussion about large-volume data management, and issues related to reporting requirements in future distribution networks is included
    • 

    corecore