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ABSTRACT

We use kinetic simulations of diffusive shock acceleration (DSA) to study the time-dependent evolution of plane,
quasi-parallel, cosmic-ray (CR) modified shocks. Thermal leakage injection of low-energy CRs and finite Alfvén
wave propagation and dissipation are included. Bohm diffusion as well as the diffusion with the power-law
momentum dependence are modeled. As long as the acceleration timescale to relativistic energies is much
shorter than the dynamical evolution timescale of the shocks, the precursor and subshock transition approach
the time-asymptotic state, which depends on the shock sonic and Alfvénic Mach numbers and the CR injection
efficiency. For the diffusion models we employ, the shock precursor structure evolves in an approximately
self-similar fashion, depending only on the similarity variable, x/(ust). During this self-similar stage, the CR
distribution at the subshock maintains a characteristic form as it evolves: the sum of two power laws with
the slopes determined by the subshock and total compression ratios with an exponential cutoff at the highest
accelerated momentum, pmax(t). Based on the results of the DSA simulations spanning a range of Mach numbers,
we suggest functional forms for the shock structure parameters, from which the aforementioned form of CR
spectrum can be constructed. These analytic forms may represent approximate solutions to the DSA problem for
astrophysical shocks during the self-similar evolutionary stage as well as during the steady state stage if pmax is fixed.
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1. INTRODUCTION

Diffusive shock acceleration (DSA) is widely accepted as
the primary mechanism through which cosmic rays (CRs) are
produced in a variety of astrophysical environments (Bell 1978;
Drury 1983; Blandford & Eichler 1987). The most attractive
feature of the DSA theory is the simple prediction of the power-
law momentum distribution of CRs, f (p) ∝ p−3σ/(σ−1) (where
σ is the shock compression ratio) in the test-particle limit. For
strong, adiabatic gas shocks, this gives a power-law index of 4,
which is reasonably close to the observed, “universal” index of
the CR spectra in many environments.

However, it was recognized early on, through both analytical
and numerical calculations, that the DSA can be very efficient
and that there are highly nonlinear back-reactions from CRs
to the underlying flows that modify the spectral form as well
(e.g., Malkov & Drury 2001, for a review). In such CR-
modified shocks, the pressure from CRs diffusing upstream
compresses and decelerates the gas smoothly before it enters the
dissipative subshock, creating a shock precursor and governing
the evolution of the flow velocity in the precursor. On the other
hand, it is primarily the flow velocity through the precursor and
the subshock that controls the thermal leakage injection and the
DSA of CRs. Hence the dynamical structure of the flow and the
energy spectrum of CRs must evolve together, influencing each
other in a self-consistent way.

It is formation of the precursor that causes the momentum dis-
tribution of CRs to deviate from the simple test-particle power-
law distribution. With a realistic momentum-dependent diffu-
sion, κ(p), the particles of different momenta, p, experience
different compressions, depending on their diffusion length,
ld (p) = κ(p)/us (where us is the shock speed). The parti-
cles just above the injection momentum (pinj) sample mostly the

compression across the subshock (σs), while those near the high-
est momentum (pmax) experience the greater, total compression
across the entire shock structure (σt ). This leads to the particle
distribution function that behaves as f (p) ∝ p−3σs/(σs−1) for
p ∼ pinj, but flattens gradually to f (p) ∝ p−3σt /(σt−1) toward
p ∼ pmax (Duffy et al. 1994).

Analytic solutions for f (p) at the shock have been found
in steady state limits under special conditions; for example,
the case of a constant diffusion coefficient (Drury et al. 1982)
and the case of steady state shocks with a fixed pmax above
which particles escape from the system (Malkov 1997, 1999;
Amato & Blasi 2005, 2006). In these treatments, the self-
consistent solutions involve rather complicated transformations
and integral equations, so are difficult to use in general, although
they do provide important insights. In particular, Malkov (1999)
showed that in highly modified, strong, steady shocks (σt � 1)
with a fixed pmax, the spectrum of CRs flattens to f (p) ∝ p−3.5

for κ(p) ∝ pα with α > 1/2. He also argued that the
form of the CR spectrum is universal under these conditions,
independent of κ(p) and σt . In an effort to provide more
practical description Berezhko & Ellison (1999) presented a
simple approximate model of the CR spectrum at strong,
steady shocks in plane-parallel geometry. They adopted a three-
element, piecewise power-law form to represent the spectrum
at nonrelativistic, intermediate, and highly relativistic energies.
And they demonstrated that this model approximately represents
the results of their Monte Carlo simulations.

In Kang & Jones (2007; Paper I), from kinetic equation
simulations of DSA in plane-parallel shocks with the Bohm-
like diffusion (κ ∝ p), we showed that the CR injection rate and
the postshock states approach time-asymptotic values, even as
the highest momentum pmax(t) continues to increase with time,
and that such shocks then evolve in a “self-similar” fashion. We
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then argued that the nonlinear evolution of the shock structure
and the CR distribution function in this stage may be described
approximately in terms of the similarity variables, ξ = x/(ust)
and Z ≡ ln(p/pinj)/ln[pmax(t)/pinj]. Based on the self-similar
evolution, we were able to predict the time-asymptotic value
of the CR acceleration efficiency as a function of shock Mach
number for the assumed models of the thermal leakage injection
and the wave transportation. In those simulations we assumed
that the self-generated waves provide scatterings sufficient
enough to guarantee the Bohm-like diffusion, and that the
particles do not escape through either an upper momentum
boundary or a free-escape spatial boundary. So the CR spectrum
extended to ever higher momenta, but at the same time the
particles with the highest momentum spread over the increasing
diffusion length scale as lmax ∝ κ(pmax)/us ∝ pmax ∝ t . We
note that in Paper I we considered plane-parallel shocks with
shock Mach number, 2 � M0 � 80, propagating into the
upstream gas with either T0 = 104 or 106 K, since we were
interested mainly in cosmic structure formation shocks.

The simplicity of the results in Paper I suggested that it might
be possible to obtain an approximate analytic expression for the
CR spectrum in such shocks, but the simulations presented in
that paper were not sufficient to address that question. Thus,
we further carried out an extensive set of simulations to fully
explore the time-dependent behavior of the CR distribution in
CR-modified shocks with shock Mach numbers M0 � 10. In this
paper, from the results of these simulations, we suggest practical
analytic expressions that can describe the shock structure and
the energy spectrum of accelerated particles at evolving CR-
modified shocks in plane-parallel geometry, in which the Bohm-
like diffusion is valid.

In realistic shocks, however, once the diffusion length lmax
becomes comparable to the curvature of shocks, or when the
growth of waves generated by the CR streaming instability is
inefficient, the highest energy particles start to escape from the
system before they are scattered and advected back through the
subshock. In such cases, pmax is fixed, and the CR spectrum and
the shock structure evolve into steady states. So, for comparison,
we carried out additional simulations for analogous shocks
in which the particles are allowed to escape from the system
once they are accelerated above an upper momentum boundary,
pub. Those shocks achieve true steady states and the shock
structure and the CR distribution become stationary with forms
similar to those maintained during the self-similar stage of
shock evolution. In this sense, our solution is consistent with
the analytic solutions for steady state shocks obtained in the
previous papers mentioned above.

In the next section, we describe the numerical simulations
and results. The approximate formula for the CR spectrum will
be presented and discussed in Section 3, followed by a summary
in Section 4. We also include an Appendix that presents
simple analytic and empirical expressions that can be used to
characterize the dynamical properties of CR-modified shocks.

2. NUMERICAL CALCULATIONS

2.1. Basic Equations

In our kinetic simulations of DSA, we solve the standard
gasdynamic equations with the CR pressure terms in the
conservative, Eulerian form for one-dimensional plane-parallel
geometry (Kang et al. 2002; Kang & Jones 2005, 2007),

∂ρ

∂t
+

∂(uρ)

∂x
= 0, (1)

∂(ρu)

∂t
+

∂(ρu2 + Pg + Pc)

∂x
= 0, (2)

∂(ρeg)

∂t
+

∂

∂x
(ρegu+Pgu) = −u

∂Pc

∂x
+W (x, t)−L(x, t), (3)

where Pg and Pc are the gas and CR pressures, respectively,
eg = Pg/[ρ(γg − 1)]+u2/2 is the total gas energy per unit mass.
The remaining variables, except for L and W, have the usual
meanings. The injection energy loss term, L(x, t), accounts for
the energy carried away by the suprathermal particles injected
into the CR component at the subshock and is subtracted from
the postshock gas immediately behind the subshock. The gas
heating due to the Alfvén wave dissipation in the upstream
region is represented by the term

W (x, t) = −vA

∂Pc

∂x
, (4)

where vA = B/
√

4πρ is the local Alfvén speed (Paper I). These
equations can be used to describe parallel shocks, where the
large-scale magnetic field is aligned with the shock normal and
the pressure contribution from the turbulent magnetic fields can
be neglected.

The CR population is evolved by solving the diffusion–
convection equation for the pitch angle-averaged distribution
function, f (x, p, t), in the form

∂g

∂t
+(u+uw)

∂g

∂x
= 1

3

∂

∂x
(u+uw)

(
∂g

∂y
− 4g

)
+

∂

∂x

[
κ(x, y)

∂g

∂x

]
,

(5)
where g = p4f and y = ln(p) (Skilling 1975a). Here,
κ(x, p) is the spatial diffusion coefficient. The CR population is
isotropized with respect to the local Alfvénic wave turbulence,
which would in general move at a speed uw with respect to the
plasma. Since the Alfvén waves upstream of the subshock are
expected to be established by the streaming instability, the wave
speed is set there to be uw = vA. Downstream, it is likely that
the Alfvénic turbulence is nearly isotropic, so we use uw = 0
there.

We consider two models for CR diffusion: Bohm diffusion
and power-law diffusion,

κB = κ∗
(

ρ0

ρ

)ν
p2√

p2 + 1
(6)

κpl = κ∗
(

ρ0

ρ

)ν

pα,

with α = 0.5–1. Hereafter, the momentum is expressed in units
of mpc, where mp is the proton mass and c is the speed of light.
So, κ∗ is a constant of dimensions of length squared over time.
As in our previous studies, we consider diffusion both without
and with a density dependence, ρ0/ρ; that is, either ν = 0 or
ν = 1. The latter case quenches the CR acoustic instability
(Drury 1984) and approximately accounts for the compressive
amplification of Alfvén waves. Since we do not follow explicitly
the amplification of magnetic fields due to streaming CRs, we
simply assume that the field strength scales with compression
and so the diffusion coefficient scales inversely with density.
Bohm-like diffusion is an idealization of what is expected
in a dynamically evolving CR-modified shock. As discussed
in Section 2.3 the diffusion coefficient, which results from
resonant scattering with Alfvén waves, varies inversely with
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the intensity of the resonant waves. The wave intensity is
expected to be amplified as the shock evolves from upstream,
ambient values via the streaming instability. Bohm diffusion
represents the simplest nonlinear limited model for that process.
The very highest momentum CRs will encounter ambient
wave intensities, so perhaps below levels implied by Bohm
diffusion. The model assumes that the streaming instability
quickly amplifies those waves to nonlinear levels (e.g., Skilling
1975b; Lucek & Bell 2000). We label the quantities upstream
of the shock precursor by the subscript “0,” those immediately
upstream of the gas subshock by “1,” and those downstream by
“2.” So, ρ0, for example, stands for the density of the upstream
gas.

Equations (1)–(3) and (5) are simultaneously integrated by the
Cosmic-Ray Acceleration SHock (CRASH) code. The detailed
description of the CRASH code can be found in Kang et al.
(2002) and Paper I. Three features of CRASH are important to
our discussion below. First, CRASH applies an adaptive mesh
refinement technique around the subshock. So the precursor
structure is adequately resolved to couple the gas to the CRs of
low momenta, whose diffusion lengths can be at least several
orders of magnitude smaller that the precursor width. Second,
CRASH uses a subgrid shock tracking; that is, the subshock
position is followed accurately within a single cell on the finest
mesh refinement level. Consequently, the effective numerical
subshock thickness needed to compute the spatial derivatives
in Equation (5) is always less than the single cell size of the
finest grid. Third, we calculate the exact subshock speed at each
time step to adjust the rest frame of the simulation, so that the
subshock is kept inside the same grid cell throughout. These
three features enable us to obtain good numerical convergence
in our solutions with a minimum of computational efforts. As
shown in Paper I, the CRASH code can obtain reasonably
converged dynamical solutions even when the grid spacing in
the finest refined level is greater than the diffusion length of the
lowest energy particles (i.e., Δx8 > ld (pinj)). This feature allows
us to follow the particle acceleration for a large dynamic rage of
pmax/pinj, typically, ∼ 109, although the evolution of the energy
spectrum at low energies and the early dynamical evolution of
the shock structure may not be calculated accurately.

2.2. Simulation Setup

The injection and acceleration of CRs at shocks depend
in general upon various shock parameters such as the Mach
number, the magnetic field strength and obliquity angle, and the
strength of the Alfvén turbulence responsible for scattering. In
this study we focus on the relatively simple case of CR proton
acceleration at quasi-parallel shocks, which is appropriately
described by Equations (1)–(3). The details of simulation setup
can be found in Paper I, and only a few essential features are
briefly summarized here. Except for diffusion details, the setup
described here is identical to those reported in Paper I.

As in Paper I, a shock is specified by the upstream gas
temperature T0 and the initial Mach number M0. Two values
of T0, 104 and 106 K, are considered, representing the warm
photoionized gas and the hot shock-heated gas often found in
astrophysical environments, respectively. Then the initial shock
speed is given as

us,i = cs,0M0 = 15 km s−1

(
T0

104

)1/2

M0, (7)

where cs,0 is the sound speed of the upstream gas. All the

simulations reported in this paper have M0 = 10, which is
large enough to produce significant CR modification. In Paper I,
we considered a wide range of shock Mach numbers and
examined the Mach-number dependence of the evolution of
CR-modified shocks. The CR injection and acceleration effi-
ciencies are determined mainly by the sonic Mach number and
the relative Alfvén Mach number for shocks with M0 � 10
(Kang et al. 2002; Kang 2003). On the other hand, they depend
sensitively on other model parameters for shocks with lower
Mach numbers. In this paper, we thus focus on the evolution of
the CR spectrum at moderately strong shocks with M0 � 10. We
will consider the more complicated problem of weaker shocks
in a separate paper.

In our problem, three normalization units are required for
length, time, and mass. While ordinary, one-dimensional, ideal
gasdynamic problems do not contain any intrinsic scales, the
diffusion in the DSA problem introduces one; that is, either a
diffusion length or a diffusion time, which of course depend
on the particle momentum. So let p† be a specific value
of the highest momentum that we aim to achieve by the
termination time of our simulations. Then the greatest width
of the precursor is set by the diffusion length of the particles
with p†, ld (p†) = κ(ρ0, p

†)/us , while the time required for the
precursor to reach that width is given by tacc(p†) ∝ ld (p†)/us

(see Equation (9)). Hence we choose diffusion length and
time for p†, x̂ = κ̂/û and t̂ = κ̂/û2, with û = us,i and
κ̂ = κ(ρ0, p

†), as the normalization units for length and time.
For the normalization units for mass, we choose ρ̂ = ρ0.
Then the normalized quantities become x̃ = x/x̂, t̃ = t/t̂ ,
ũ = u/û, κ̃ = κ/κ̂ , and ρ̃ = ρ/ρ̂. In addition, the normalized
pressure is expressed as P̃ = P/(ρ̂û2). With these choices,
we expect that at time t̃ ∼ 1, the precursor width would be
x̃ ∼ l̃d (p†) ∼ 1, for example. It should be clear that the physical
contents of our normalization are ultimately determined by
the value of p† anticipated to correspond to t̃ ∼ 1 as well
as by the form of κ(ρ, p). In the simulations reported here,
p† was selected to give us the maximum span of p that is
consistent with our ability to obtain converged results with
available computational resources. Our choice of p† is especially
dependent on the nonrelativistic momentum dependence of
κ(p). In particular, when the dependence is steep, κ(pinj)
and ld (pinj) can become extremely small compared with their
relativistic values, necessitating very fine spatial resolution
around the subshock.

In Table 1, we list our numerical models classified by T0
and κ . For example, T6P1 model adopts T0 = 106 K and
κpl with α = 1 and ν = 0, while T4Bd model adopts T =
104 K and Bohm diffusion, κB, with ν = 1. In the power-law
diffusion models of T6P1 and T6P1d, p† ∼ 106 is chosen for
the normalization, so that κ̃(ρ̃ = 1) = κ̃∗p = 10−6p. For the
Bohm diffusion models, T6Bd and T4Bd, on the other hand,
p† ∼ 102 is chosen, because the steep nonrelativistic form of
the diffusion makes those models too costly for us to follow
evolution to much higher CR momenta.

A specific example can clarify the application of these
simulations to real situations. Let us consider a shock with
us,i = 1.5 × 103 km s−1 propagating into the interstellar
medium with B = 5 μG. Then in the Bohm limit that the
relativistic CR scattering length equals the gyroradius, κ∗ =
mpc2/(3eB) = 6.3 × 1021 cm2 s−1. For the T6P1 model, for
instance, the normalization constants are û = 1.5 × 103 km s−1

and κ̂ = 6.3 × 1027 cm2 s−1, so x̂ = 4.2 × 1019 cm and
t̂ = 2.8 × 1011 s.
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Table 1
Preshock Temperature and Diffusion Coefficient in Numerical Models

Model Name T0(K) κ/κ̂ Description for Diffusion Coefficient

T6P1d 106 10−6p(ρ0/ρ) Power-law diffusion with ρ−1 dependence
T6P3/4d 106 10−6p3/4(ρ0/ρ) Power-law diffusion with ρ−1 dependence
T6P1 106 10−6p Power-law diffusion
T6P1/2 106 1.78 × 10−4p1/2 Power-law diffusion
T4P1d 104 10−5p(ρ0/ρ) Power-law diffusion with ρ−1 dependence
T6Bd 106 10−2p2/

√
p2 + 1(ρ0/ρ) Bohm diffusion with ρ−1 dependence

T4Bd 104 10−2p2/
√

p2 + 1(ρ0/ρ) Bohm diffusion with ρ−1 dependence

On the other hand, the time evolution of these shocks
becomes approximately self-similar, as we will demonstrate.
In that case the normalization choices above are entirely for
the convenience of computation. We will eventually replace
even these normalized physical variables with dimensionless
similarity variables. To simplify the notation in the meantime,
we hereafter drop the tilde from the normalized quantities as
defined above.

Our simulations start with a purely gasdynamic shock of
M0 = 10 at rest at x = 0, initialized according to Rankine–
Hugoniot relations with u0 = −1, ρ0 = 1 and a gas adiabatic
index, γg = 5/3. So the initial shock speed is us,i = 1 in code
units. There are no pre-existing CRs, i.e., Pc(x) = 0 at t = 0.

2.3. Thermal Leakage and Alfvén Wave Transport

Although the shock Mach number is the key parameter that
determines the evolution of CR-modified shocks, the thermal
leakage injection and the Alfvén wave transport are important
elements of DSA. They were discussed in detail in previous
papers including Paper I. So here we briefly describe only the
central concepts to make this paper self-contained.

In the CRASH code, the injection of suprathermal parti-
cles via thermal leakage is emulated numerically by adopting a
“transparency function,” τesc(εB, υ), which expresses the prob-
ability of downstream particles at given random velocity, υ,
successfully swimming upstream across the subshock through
the postshock MHD waves (Kang et al. 2002), whose ampli-
tude is parameterized by εB . Once such particles cross into the
upstream flow, they are subject to scattering by the upstream
Alfvén wave field, so participate in DSA. The condition that
nonzero probability for suprathermal downstream particles to
cross the subshock (i.e., τesc > 0 for p > pinj) effectively selects
the lowest momentum of the particles entering the CR popula-
tion. The velocity υ obviously must exceed the flow speed of
the downstream plasma, u2. In addition, leaking particles must
swim against the effective pondermotive force of MHD turbu-
lence in the downstream plasma. The parameter, εB = B0/B⊥
used to represent this, is the ratio of the magnitude of the large-
scale magnetic field aligned with the shock normal, B0, to the
amplitude of the postshock wave field that interacts with low
energy particles, B⊥. It is more difficult for particles to swim
upstream when the wave turbulence is strong (εB is small), lead-
ing to smaller injection rates. Malkov & Völk (1998) argued on
plasma physics grounds that it should be 0.25 � εB � 0.35.
Our own CR shock simulations established that εB ∼ 0.2–0.25
leads to injection fractions in the range ∼10−4 to 10−3, which
are similar to the commonly adopted values in other models
(e.g., Malkov 1997; Amato & Blasi 2005). In this study, we
use εB = 0.2 for numerical models, although the choice is not
critical to our conclusions.

The CR transport in DSA is controlled by the intensity,
spectrum, and isotropy of the Alfvénic turbulence resonant with
CRs. Upstream of the subshock, the Alfvénic turbulence is
thought to be excited by the streaming CRs (e.g., Bell 1978;
Lucek & Bell 2000). Recently there has been much emphasis
on the possible amplification of the large-scale magnetic field
via nonresonant wave–particle interactions within the shock
precursor (e.g., Bell 2004; Amato & Blasi 2006; Vladmiriov
et al. 2006). Those details will not concern us here; we make the
simplifying assumption that the Alfvénic turbulence saturates
and that scattering isotropizes the CR distribution in the frame
moving with the mean Alfvén wave motion (see Equation (5)).
Since the upstream waves are amplified by the CRs escaping
upstream, the wave frame propagates in the upstream direction;
i.e., uw > 0. Downstream, various processes should isotropize
the Alfvén waves (e.g., Achterberg & Blandford 1986), so the
wave frame and the bulk flow frame coincide; i.e., uw = 0. This
transition in uw across the subshock reduces the velocity jump
experienced by CRs during DSA. Since it is really the velocity
jump rather than the density jump that sets the momentum
boost, this reduces the acceleration rate somewhat when the
ratio of the upstream sound speed to the Alfvén speed is finite.
An additional effect that has important impact is dissipation of
Alfvén turbulence stimulated by the streaming CRs. That energy
heats the inflowing plasma beyond adiabatic compression. The
detailed physics is complicated and nonlinear, but we adopt
the common, simple assumption that the dissipation is local
and that the wave growth saturates, so that the dissipation rate
matches the rate of wave stimulation (see Equation (4); Jones
1993; Berezhko & Völk 1997). This energy deposition increases
the sound speed of the precursor gas, thus reducing the Mach
number of the flow into the subshock, again weakening DSA to
some degree (e.g., Achterberg 1982). Thus, the CR acceleration
becomes less efficient, when the Alfvén wave drift and heating
terms are included (Berezhko & Völk 1997; Kang & Jones
2006).

The significance of these effects can be parameterized by
the ratio of the magnetic field to thermal energy densities,
θ = EB,0/Eth,0, in the upstream region, which scales as the
square of the ratio of the upstream Alfvén (υA) and sound
speeds. In Paper I, we considered 0.1 � θ � 1; here we
set θ = 0.1. The dependence of shock behaviors on that
parameter are outlined in Paper I. The θ parameter can be related
to the more commonly used shock Alfvénic Mach number,
MA,0 = us,i/vA,0, and the initial sonic Mach number, M0, as
MA,0 = M0

√
γg(γg − 1)/(2θ ), where vA,0 = B0/

√
4πρ0. With

γg = 5/3 and θ = 0.1, this translates into MA,0 = 2.36M0. So,
for our M0 = 10 shocks, MA,0 ≈ 24. Our initial shock speeds
are us,i = 150 km s−1 for T0 = 104 K and us,i = 1500 km s−1

for T0 = 106 K, corresponding, then, to vA = 6.4 km s−1
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Figure 1. (a)–(d) Snapshots of M0 = 10 shock of T6P1d model up to t = 1 in terms of a similarity variable ξ ≡ x/(us,i t). The flow velocity, CR pressure, and CR
distribution function at the subshock, gs (p) = fs (p)p4, and gs (Z), are shown at t = 0.1 (dotted lines), 0.2 (dashed), 0.3 (dot-dashed), 0.6 (dot-long dashed), and 1.0
(solid). The long dashed lines show the initial shock structure. (e) and (f) Time evolution of the postshock CR pressure and the compression ratios for M0 = 10 shocks
with four different models of diffusion coefficient κ(p) (see Table 1).

(A color version of this figure is available in the online journal.)

and vA = 64 km s−1, respectively. For our example magnetic
field, B0 = 5 μG, the associated upstream gas density would
be ρ0 ≈ 5 × 10−24 g cm−3 and ρ0 ≈ 5 × 10−26 g cm−3,
respectively.

3. RESULTS

3.1. Evolution Toward an Asymptotic State

In the early evolutionary stage, as CRs are first injected
and accelerated at the subshock, upstream diffusion creates
a CR pressure gradient that decelerates and compresses the
inflowing gas within a shock precursor. This leads to a gradual
decrease of shock speed with respect to the upstream gas
(Figures 1(a) and 1(b)). As the subshock consequently weakens,
the CR injection rate decreases due to a reduced velocity jump
across the subshock. The CR spectrum near pinj also steepens
(Figures 1(c) and 1(d)). The total compression across the entire
shock structure actually increases to about 5 in the Mach 10
shocks reported here. The highest momentum CRs respond to
the total shock transition, which flattens the spectrum at higher
momenta; i.e., the CR spectrum evolves the well known concave
curvature between the lowest and the highest momenta. Each
of these evolutionary features continue to be enhanced until
preshock compression, CR injection at the subshock, and CR
acceleration through the entire shock structure all reach self-
consistent dynamical equilibrium states (Figures 1(e) and 1(f)).
Once compression in the precursor reaches the level at which
DSA begins to saturate, meaning the reduced subshock strength
reduces CR injection to maintain an equilibrium, the shock
compression (σs = ρ2/ρ1 and σt = ρ2/ρ0) as well as the gas

and CR pressures should remain approximately constant during
subsequent shock evolution. From that time on the structure of
the precursor and the CR spectrum must evolve in tandem to
maintain these dynamical features.

The CR pressure is calculated from the particle distribution
function by

Pc = 4π

3
mpc2

∫ ∞

pinj

g(p)
p√

p2 + 1

dp

p
. (8)

To see how Pc evolves during the early, nonrelativistic stage,
consider the idealized the test-particle case where the CR
distribution has a power-law form, g(p) = g0(p/pinj)−δ up
to p = pmax, where 0 < δ ≡ (4 − σs)/(σs − 1) < 0.5 for
the shock compression ratio of 4 > σs > 3. Then one can
roughly express Pc ∝ [(pmax/pinj)1−δ − 1] ∝ (pmax/pinj)1−δ for
pinj � pmax < 1. In a strong, unmodified shock, 1 − δ ≈ 1,
and Pc initially increases quickly as Pc ∝ pmax/pinj. We will
show in Section 3.3, as the shock becomes modified toward the
dynamical equilibrium state, that the CR pressure is dominated
by relativistic particles and the CR spectrum evolves in a manner
that leads to nearly constant postshock Pc,2. These features in
the evolution of Pc,2 are illustrated in Figures 1(e) and 1(f). The
time-asymptotic states are slightly different among different
models, because the numerically realized CR injection rate
depends weakly on κ(p).

The mean acceleration time for a particle to reach pmax from
pinj in the test-particle limit of DSA theory is given by (e.g.,
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Figure 2. Self-similar evolution of M0 = 10 shock of T6P1d model. The shock structure is shown at t = 2 (dotted lines), 10 (dashed), and 20 (solid) as a function of
the similarity variable ξ = x/(us,i t) in the shock rest frame. The long dashed lines show the initial shock structure.

(A color version of this figure is available in the online journal.)

Drury 1983)

tacc = 3

u0 − u2

∫ pmax

pinj

(
κ0

u0
+

κ2

u2

)
dp

p
. (9)

For power-law diffusion with density dependence, κpl =
κ∗pα(ρ0/ρ)ν , the maximum momentum can be estimated by
setting t = tacc as

pmax(t) ≈
[

α(σt − 1)

3σt

(
1 + σ 1−ν

t

) u2
s

κ∗ t

]1/α

=
[
fc

u2
s

κ∗ t

]1/α

, (10)

where fc ≡ α(σt − 1)/
[
3σt

(
1 + σ 1−ν

t

)]
is a constant factor

during the self-similar stage and us is the shock speed in the time-
asymptotic limit. As the feedback from CRs becomes important,
the shock speed relative to far upstream flow is reduced, typically
about 10%–20% for the shock parameters considered here (i.e.,
us ≈ [0.8–0.9]us,i). With α = 1 and ν = 1, for a typical value
of σt ≈ 5.3 for an M0 = 10 shock, fc ≈ 0.13.

In an evolving CR shock, at a given shock age of t, the power-
law spectrum should extend roughly to pmax(t) above which it
should decrease exponentially. Then the diffusion length of the
most energetic particles increases linearly with time as

lmax(t) ≡ κ∗ pα
max(t)

us

= fcust. (11)

So lmax(t) depends only on the characteristic length ust , in-
dependent of the size of the diffusion coefficient, although at
a given time the particles are accelerated to higher energies
with smaller values of κ∗. Since the precursor scale height is

proportional to lmax, the precursor broadens linearly with time,
again independent of the size of κ∗. This is valid even for the
Bohm diffusion if pmax � 1, since κB ≈ κ∗p for p � 1.
Thus, the hydrodynamic structure of evolving CR shocks does
not depend on the diffusion coefficient, even though the CR
diffusion introduces the diffusion length and timescales in the
problem.

3.2. Shock Structure and CR Spectrum in Self-similar Stage

After the precursor growth reaches a time-asymptotic form,
the shock structure follows roughly the self-similar evolution
and stretches linearly with time, as noted above. Thus, we show
in Figure 2 the evolution of an M0 = 10 shock with T6P1d
model in terms of the similarity variable, ξ = x/(us,i t), for
t > 1 (i.e., later stage of the shock shown in Figure 1). The
time-asymptotic shock speed approaches us = u0 ≈ 0.9us,i for
these shock parameters. The reduction in shock speed results
from the increase in σt , so depends upon the degree of shock
modification. Here σt ≈ 5.3, α = 1, ν = 1, so Equation (11)
give lmax ≈ 0.13ust , which corresponds to the precursor scale
height in terms of ξ , Hξ ≡ lmax/(us,i t) ≈ 0.12.

We also show the approximate self-similar evolution of the
shock structure for four additional models with κ(ρ, p) listed in
Table 1 (Figure 3). As discussed in Section 3.1, the overall shock
structure at a given time t is roughly independent of the diffusion
coefficient, except for some minor details in the shock profile
that have developed in the early stage. Also the shock evolution
seems to be approximately self-similar in all the models, as
shown in the middle and right panels of Figure 3. Of course,
with different values of κ∗ and α, on the other hand, the highest
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Figure 3. Self-similar evolution of M0 = 10 shock of four different models listed in Table 1, shown at t = 1 (dotted lines), 5 (dashed), and 10 (solid). The CR pressure
is shown as a function of x (left panels) and the spatial similarity variable ξ = x/(us,i t) (middle panels). The gas density is shown in the right panels.

(A color version of this figure is available in the online journal.)

momentum of the CR spectrum at a given time depends on κ
(see Figure 5).

Figures 4(a) and 4(b) shows how the particle distribution
at the subshock, gs(p) = f (xs, p)p4, evolves during the self-
similar stage, extending to higher pmax. For this model Equation
(10) gives pmax ≈ (0.1/κ∗)t = 105t . This estimate is quite
consistent with the evolution of gs(p) shown in this figure. The
peak value of gs(p) near pmax seems to remain constant during
the self-similar stage. This reflects the fact that Pc,2 remains
constant, as it must once DSA is saturated, and the fact that Pc
is dominated by relativistic CRs near pmax for strong shocks.

The injection momentum, pinj ∝ √
Pg,2/ρ2, becomes con-

stant in time after the initial adjustment, because the postshock
state is fixed in the self-similar evolution stage. Then the value
of gs(pinj) is fixed by gs,th(pinj), the thermal distribution of the
postshock gas at pinj, and stays constant, too.

Let us suppose particles with a given momentum p1 expe-
rience on average the velocity jump over the diffusion length
ξ1 = ld (p1)/(ust1), Δu(ξ1), at time t1. At a later time t they
will be accelerated to p = p1 · (t/t1)1/α and diffuse over the
scale, ξ = ld (p)/(ust) = ξ1. So they experience the same ve-
locity jump Δu(ξ1), as long as the velocity profile, u(ξ ), re-
mains constant during the self-similar stage. Then the spectral
slopes plotted in terms of p/pmax should retain a similar shape
over time. The slope of the distribution function at the sub-
shock, q = −d ln gs/d ln p + 4, and the slope of the volume-
integrated distribution function, Q = −d ln G/d ln p+4 (where
G = ∫

gdx), as a function of p/pmax(t) are shown in Figure 4(d).
Low energy particles near pinj experience the subshock compres-

sion only, while highest momentum particles near pmax feel the
total shock compression. So q(p) ≈ qs = 3σs/(σs − 1) for
p ∼ pinj, while q(p) ≈ qt = 3σt/(σt − 1) for p ∼ pmax. The
numerical results are roughly consistent with such expectations.

Consequently, to a good approximation, gs(p) evolves with
fixed amplitudes, gs(pinj) and gs(pmax), and with fixed spectral
slopes, qs and qt at pinj and pmax, respectively, while stretching
to higher pmax(t). The volume-integrated distribution function,
G(p), also displays a similar behavior as gs(p). In the bottom
panels of Figure 4, G(p)/t and G(Z)/t are shown, noting that
the kinetic energy passed through the shock front increases
linearly with time.

In Paper I, based on the DSA simulation results for t � 10,
we suggested that the distribution function may become self-
similar in terms of the momentum similarity variable, Z, defined
in Section 1. If we define the “partial pressure function” as

F (Z) ≡ g(Z)
p√

p2 + 1
ln

(
pmax

pinj

)
, (12)

then the CR pressure is given by Pc ∝ ∫ ∞
0 F (Z)dZ. We

suggested there that the postshock CR pressure stays constant
because the evolution of F (Z) becomes self-similar. As can
be seen in Figures 4(b) and 4(c), the functions gs(Z) and
Fs(Z) at the subshock seem to change very slowly, giving the
false impression that Fs(Z) might be self-similar in terms of
the variable Z. However, the constant shape of F (Z) cannot
be compatible with the self-similar evolution of the precursor
and shock profile. Since fs(p) ∝ (p/pinj)−qs at Z ∼ 0 and
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Figure 4. CR distribution function for M0 = 10 shock of T6P1d model, as shown in Figure 2, at t = 2 (dotted lines), 10 (dashed), and 20 (solid). (a) and (b) The
distribution function at the subshock, gs (p) and gs (Z), where Z = ln(p/pinj)/ ln(pmax/pinj). (c) The partial pressure, Fs, defined in Equation (12) and its cumulative
distribution, Fs (< z). (d) The power-law slopes, q = −d ln gs/d ln p + 4 and Q = −d ln G/d ln p + 4. (e) and (f) The volume-integrated distribution function
G = ∫

gdx plotted against log(p) or Z. The long dashed lines in (a), (b), and (d) show the analytic fitting given in Equation (14) with qs = 4.20, qt = 3.76,
pinj = 10−2, and pmax = 105t at t = 10.

(A color version of this figure is available in the online journal.)

fs(p) ∝ (p/pmax)−qt at Z ∼ 1 with constant values of pinj,
qs, and qt, the shape of F (Z) should evolve accordingly in the
self-similar stage (see Figure 9 below).

Figure 5 shows how the evolution of gs(p) depends on the
diffusion coefficient and preshock temperature, while other
parameters, M0 = 10, εB = 0.2, and θ = 0.1, are fixed. The
same set of models is shown as in Figure 3. The shape of gs(p) is
somewhat different among different models, although it seems
to remain similar in time for a given model. The causes of such
differences can be understood as follows. First of all, the value
of gs(pinj) ≈ gs,th(pinj) depends on the value of pinj ∝ (us/c) ∝
M0

√
T0. Second, the numerically realized “effective” value of

the injection momentum depends on the diffusion coefficient
and grid spacing, leading to slightly different injection rates and
shock structures. Thus, the postshock Pc,2 and the compression
ratios (i.e., the shock structure) depend weakly on diffusion
coefficient, as shown in Figures 1(e) and 1(f). The ensuing CR
spectra have slightly different values of qs and qt as shown in
Figure 5.

The spectral slope of the CR spectrum is determined by the
mean velocity jump that the particles experience across the
shock structure. Here, we examine how the precursor velocity
profile depends on the diffusion model. Figure 6(a) shows the
velocity structure U (ξ ) = −u(ξ ) in the precursor (ξ > 0) for
five different diffusion models, where u(ξ ) is defined as shown
in Figure 2. We use the velocity data in the finest level grid as
well as in the base grid. The velocity profiles are quite similar
in all the models except that the model with κ ∝ p1/2 shows a
slightly different pattern at small scales (log ξ < −5).

Since the particles with momentum p feel on average the
velocity jump over the corresponding diffusion length, we can
find the velocity U (ξp) at the distance from the shock that
satisfies x = ld (p) = ξp · (us,i t). Using Equation (10), we
find then ξp = fc(us/us,i)(p/pmax)α . Then the particles with
the same ratio of p/pmax diffuse over the same similarity scale,
ξp, and feel the same velocity jump, U (ξp) +uw(ξp)−U2 across
the shock. Thus, the spectral slope can be estimated from the
velocity profile as (e.g., Berezhko & Ellison 1999)

qu(p) = qu(ξp) = 3(U + uw)

U + uw − U2
+

d ln(U + uw − U2)

d ln p
. (13)

Figure 6(b) shows the spectral slope, qu, which is calculated
from numerical results of U + uw for different models. These
curves compare to the q(p) curves in Figure 5.

The numerical convergence issue should be discussed here.
The base grid had a spatial resolution Δx0 = 2 × 10−3 in
the code units. The small region around the subshock was
refined with a number of levels increasing to eight, giving
there a spatial resolution Δx8 = 7.8 × 10−6. This structure
was sufficient to produce dynamically converged solutions as
discussed in Paper I. The diffusion length near pinj ≈ 10−2 is,
for instance, ld (pinj) ≈ κ(pinj)/us,i ≈ 10−8 in T6P1d model and
łd (pinj) ≈ 2 × 10−5 in T6P1/2 model, where all quantities are
given in the code units. So the solution for Equation (5) is not
resolved for the lowest energy particles in T6P1d model, while
it should be well resolved in T6P1/2 model. Since low energy
particles cannot see the flow structure shorter than the minimum
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Figure 5. CR distribution function at the subshock, gs (p) and gs (Z), and the power-law slopes, q = −d ln gs/d ln p + 4 are shown at t = 1 (dotted lines), 5 (dashed),
and 10 (solid) for the four diffusion models shown in Figure 3. The long dashed lines show the analytic fitting given in Equation (14) at t = 10. The adopted values of
qs and qt are given for each model.

(A color version of this figure is available in the online journal.)

Figure 6. (a) Velocity profiles in the precursor as a function of the similarity distance from the subshock for five different models with M0 = 10 listed in Table 1.
(b) The power slope calculated with Equation (13) using the velocity profile shown in (a).

(A color version of this figure is available in the online journal.)

numerical thickness of the subshock, i.e., Δx8, corresponding to
the effective diffusion length of p ∼ 10 for T6P1d model, all
particles below p < 10 feel the same subshock compression,
independent of their diffusion lengths. This leads to a more
or less constant q(p) ≈ qs for p < 10. The models shown
in Figures 4 and 5 exhibit this trend except T6P1/2 model in
which the diffusion of the injected particles are well resolved
with Δx8/ld (pinj) = 0.4.

The momentum integration of g(x, p), i.e., the CR pressure,
is self-similar in the spatial similarity variable ξ . Moreover,
the CR distribution at the subshock, gs(Z), and the volume-

integrated distribution, G(Z), both change very slowly in time,
when they are expressed in terms of Z. So we expect that the
distribution function g in the plane of (ξ, Z) should change only
secularly during the self-similar stage, although, as mentioned
before, g(Z) does not evolve self-similarly in the Z space
(Figure 7). The phase space distribution of g(ξ, Z) shows that
most of low energy particles (Z < 0.5) are confined within
−0.2 � ξ � 0.1, while the highest energy particles (Z ∼ 1)
diffuse over −1 � ξ � 1. Thus, far away from the subshock,
both downstream and upstream, relativistic particles dominate
the CR energy spectrum.
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Figure 7. Left panel: contour plots of g(ξ, Z) at t = 10 (dotted lines), 20 (solid lines) for T6P1d model. Right panel: contour plots of g(ξ, Z) at t = 5 (dotted lines),
10 (solid lines) for T6P1/2 model.

(A color version of this figure is available in the online journal.)

3.3. Analytic Approximation for CR Spectrum

Based on the results of DSA simulations described in the
previous subsections, we suggest that the CR spectrum at
CR shocks with M0 � 10 in the self-similar stage can be
approximated by the sum of two power-law functions with an
exponential cutoff as follows: for pmax � 1 � pinj,

gs(p) =
[
g0 ·

(
p

pinj

)−qs+4

+ g1 ·
(

p

pmax

)−qt +4
]

× exp

[
−

(
p

1.5pmax

)2α
]

, (14)

where qs > 4 and qt < 4. The specific functional form
of the exponential cutoff was found by fitting the numerical
simulation results (see Figures 4 and 5). We have shown that,
after the precursor has developed fully, the CR pressure at the
subshock approaches a time-asymptotic value, which leads to
the self-similar evolution of the entire shock structure. Then the
parameters, pinj, qs, and qt as well as g0 ≈ gs,th(pinj), become
constant in time. Also, the value of g1 seems to stay roughly
constant, according the simulation results. We will show below
g1 has to be approximately constant, if Pc,2 remains constant
during the self-similar stage. Then the only time-dependent
parameter in Equation (14) is pmax(t), which can be estimated
from Equation (10).

Now let us examine how Pc,2 evolves in time with the
proposed form of gs(p) as pmax increases to large values.
Adopting α = 1, the contributions due to the low and high
energy components can be calculated as

PL≡
∫ pmax

pinj

g0

(
p

pinj

)−qs+4

exp

[
−

(
p

1.5pmax

)2
]

p√
p2 + 1

dp

p
,

PH ≡
∫ pmax

pinj

g1

(
p

pmax

)−qt +4

exp

[
−

(
p

1.5pmax

)2
]

p√
p2 + 1

dp

p
.

(15)

In Figure 8, we show the values of PL/g0 and PH /g1 as a
function of pmax for several values of qs and qt and pinj = 10−2.
In M0 = 10 shocks the typical values of the compression ratios
are σs ≈ 3.1 and σt ≈ 5.0, so qs ≈ 4.4 and qt ≈ 3.75. The
plot shows that both PL/g0 and PH/g1 become constant as
pmax becomes ultrarelativistic, if the shock flow is modified so

that σs → 3 and σt � 4. This explains why Pc,2 approaches
an asymptotic value as pmax becomes large, leading to the
self-similar evolution stage, after the subshock weakens to the
subshock Mach number, M1 ∼ 3–4 and the total compression
becomes greater than 4. Therefore g1 should stay constant, if
Pc,2 becomes constant in the self-similar stage.

The amplitude g1 can be estimated, if, for example, Pc,2
is known from the DSA simulations; i.e., the CR pressure
obtained with the proposed analytic form of gs should be equal
to the value of Pc,2 from the DSA simulations. Alternatively, as
outlined in the Appendix, empirical scaling relations established
from simulations can connect Pc,2 through simple physics to
basic shock parameters. Then all the parameters necessary to
construct approximations to the CR distribution function as
given in Equation (14) at arbitrary time t are known for the
self-similar evolution stage. Since the time-asymptotic, self-
similar solution of evolving CR shocks cannot be found (semi-)
analytically either from the conservation equations or from the
boundary conditions, we have to rely at least in part on numerical
simulations to estimate the parameters pinj, g0, σs , σt , and Pc,2
for given shock parameters. The analytic fitting forms that can
approximate the DSA simulation results are described in the
Appendix.

In Figures 4 and 5, we compare the analytic fitting formula
in Equation (14) with the results of our DSA simulations.
They show good agreement. These plots also demonstrate that
gs(pmax), and therefore, g1, remains constant in the self-similar
evolution stage. The compression ratios shown in Figure 1
are σs ≈ 3.2 and σt ≈ 5.0, so the power-law indices calculated
with these ratios are qs = 4.36 and qt = 3.75. But the
numerical value of q = −d ln fs/d ln p near pinj is 4.2, because
the diffusion of low energy particles is not resolved fully.
The minimum value of q = −d ln fs/d ln p near pmax is
3.79, slightly larger than qt, because of the exponential cutoff.
Just to demonstrate how the proposed form of gs(p) fits the
simulation results, we use qs = 4.2 and qt = 3.76 instead
for the curve shown in Figure 4. We note that Berezhko &
Ellison (1999) suggested the minimum value of q is qmin =
3.5 + (3.5−0.5σs)/(2σt −σs −1). With our compression ratios,
σs = 3.2 and σt = 5.0, this gives qmin = 3.83, which is slightly
larger than our estimate of 3.79.

Using Equations (10) and (14), we can estimate the CR
spectrum gs at arbitrary time in the self-similar stage, as
demonstrated in Figure 9. Here the value of g1 is fixed by setting
Pc,2 = 0.30 at t = 1 and then the same value of g1 is used for
the time t > 10. From the curves of cumulative Fs(< Z), we
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Figure 8. Left panel: PL, defined in Equation (15), for qs = 4.0 − 4.6. Right panel: PH , defined in Equation (15), for qt = 3.0 − 4.0. Here the injection momentum is
pinj = 10−2.

(A color version of this figure is available in the online journal.)

Figure 9. Upper panels: CR distribution at the subshock calculated using the analytic fitting formula in Equation (14) with qs = 4.20, qt = 3.76, pinj = 10−2, and
pmax = 105t . Lower panels: power-law slope of the fitted gs, i.e., q = −d ln gs/d ln p + 4, and partial pressure, Fs (Z), and its cumulative distribution, Fs (< Z).

(A color version of this figure is available in the online journal.)

can see that Pc,2 stays almost constant with the constant value
of g1, even though pmax increases 5 orders of magnitude. In fact,
Pc,2/(ρ0u

2
s,i) increases from 0.30 to 0.32 as pmax increases from

105 to 1010. For such a long span of time, however, gs(Z) or
Fs(Z) does not keep the same shape. At t = 105, the maximum
momentum corresponds to pmax ≈ 1019(eV/c) for protons.

One might ask how we can justify the validity of the proposed
form of gs at t � 1, while our DSA simulations have been
carried up to t ∼ 10–20. In the T6P1d model, pmax ∼ 106

at t = 10. So, most CRs are already ultrarelativistic, and the
CR spectrum evolves as expected (i.e., according to Equation
(14)). As long as Pc,2 stays constant, the self-similarity of
the precursor/subshock structure would be preserved even for

t � 1. The stretching of the u(x) profile in the precursor
should influence the slope of the CR spectrum in a self-
consistent way as shown in Figure 6. There is no physical
reason why such feedback between the precursor structure
and the CR spectrum cannot be extended to t � 1, as long
as the assumed CR diffusion model remains valid and the
most energetic particles remain contained within the system.
In realistic shocks, however, the assumption for Bohm diffusion
could break down due to inefficient generation of waves in the
precursor. Moreover, highest energy particles escape from the
system, when their diffusion length becomes larger that the
physical extent of the shock. The effects of escaping particles
will be explored further in the next section.
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Figure 10. Comparison of the run with particle escape at pub = 105 (solid lines) and the run without particle escape (dashed line) for T6P1d model. The shock
structure and the CR distribution are shown at t = 1 and 4.

(A color version of this figure is available in the online journal.)

We have focused here on moderately strong shock evolution
with M0 � 10, since it is much more complicated to study
nonlinear DSA at weaker shocks with M0 < 10. Nonrelativistic
CRs play a more significant role within those shocks. For in-
stance, since Pc is not dominated by relativistic CRs, we need
to follow more accurately the diffusion of nonrelativistic parti-
cles on scales close to the physical subshock thickness. Conse-
quently, the diffusion model and the numerical grid resolution
become important. The solutions also depend sensitively on the
injection momentum, especially for shocks with Mach num-
bers, M0 � 2.5, where modifications are small, so the nearly
test-particle CR spectrum is largely controlled by the injection
momentum. Physics of thermal leakage injection, however, is
not fully understood yet and we have only a working numerical
model. Thus, we defer discussion of semianalytic discussion of
evolving weak CR shocks to a separate paper.

3.4. Steady State Shocks with a Fixed pub

In realistic shocks, pmax(t) may reach an upper momentum
boundary, pub, beyond which CRs escape upstream from the
shock due to the diffusion length, lmax, approaching the physical
size of the shocked system, or to lack of scattering waves at
resonant scales of most energetic particles. From that time the
precursor will cease to increase in scale and the self-similar
evolution makes a transition into a stationary shock structure,
or the one controlled by the overall dynamics of the situation.
Because the shock energy is lost through particles escaping the
system beyond pub, the self-similar broadening of the precursor
is replaced by a constant precursor structure in steady state.

We have calculated additional runs for the T6P1d model in
which an upper momentum boundary condition, i.e., g(p) = 0.0
for p � pub is enforced. In these simulations once pmax(t) has

reached the given value of pub, the highest energy particles
escape from the shock, the CR spectrum becomes steady and
the precursor stops growing. Figure 10 shows the results of
T61Pd model with pub = 105 and without the upper momentum
boundary. The distribution function gs(p) at the shock as well
as the precursor and subshock structures all become steady after
t > 1 in the run with pub = 105. In the other run without
particle escape, the precursor continues to broaden and pmax(t)
increases with time. However, the postshock states (e.g., ρ2 and
Pc,2) in the two runs are quite similar and gs(p) in the steady
state limit is almost the same as that of the run without particle
escape at t ≈ 1, except the exponential tail above pmax. In
Figure 8 we showed that Pc,2 stays constant as pmax(t) increases
with time, if gs(p) follows the form given in Equation (14).
This explains why Pc,2 are very similar at different times in
the two runs. Minor differences are slightly lower Pc,2 and
higher ρ2 in the run with particle escape at pub. We note that
the compression ratio greater than 4 results mainly from the
combined effect of the precursor compression and the subshock
jump, i.e., σt = σp · σs , regardless of particle escape. Energy
loss due to escaping particles enhances the compression behind
the shock only slightly in this shock, since the loss rate is not
significant.

In Figures 11(a) and 11(b) snapshots are shown at t = 1 for
the runs with pub = 104 and 105, and at t = 10 for the run with
pub = 106. For comparison, we also show the time-dependent
solutions at t = 1 and 10 for the run without particle escape,
since in the evolving shock pmax ≈ 105 and 106 at t = 1 and
10, respectively, for the T6P1d model. (At t = 0.1, pmax would
reach roughly to 104, but by that time dynamical equilibrium has
not been achieved and the self-similar evolution has not begun
yet in the simulations.) The precursor structure shown in the



No. 2, 2009 EVOLUTION OF CR-MODIFIED SHOCKS 1285

Figure 11. Comparison of the runs with and without particle escape at pub for T6P1d model. (a) CR pressure profiles in the three runs with pub = 104 at t = 1 (dotted
line), with pub = 105 at t = 1 (dashed), and with pub = 106 at t = 10 (long dashed line). The solid lines are for the run without particle escape at t = 1 and 10.
(b) CR spectrum at the subshock. (c) and (d) Time evolution of the postshock CR pressure and the compression ratios. The same line types are used in all the panels.

(A color version of this figure is available in the online journal.)

profile of Pc reflects the diffusion length of highest momenta,
ld (pub) ∝ pub or ld (pmax) ∝ pmax(t). Here the CR pressure is
plotted against ξ = x/(us,i t), since the results at two different
times are shown together. So for example, the precursor width
in ξ is the same for the run with pub = 105 at t = 1 (dashed
line) and the run with pub = 106 at t = 10 (long dashed
line). Compared with these two runs, the run without particle
escape at t = 1 and 10 (solid lines) have a wider precursor
due to the particles in the exponential tail above pmax(t). In
Figures 11(c) and 11(d) we demonstrate that the evolution of
the shock structure is quite similar and the shock approaches
similar asymptotic states for all the runs, almost independent of
pub or pmax(t), which is consistent with Figure 8. The asymptotic
value of Pc,2 is slightly lower and the precursor width is smaller
in the runs with smaller pub, as expected. Otherwise, the steady
solutions with different pub are approximately the same as the
time-dependent solutions at the time t when pmax(t) equals to
pub. Thus, the proposed form of gs(p) can be applied to steady
state shocks with an upper momentum boundary pub = pmax
as well, ignoring the exponential tail above pmax. Even in the
case where the shock structure is significantly affected by the
energy loss due to escaping particles, Equation (14) can provide
the steady state solution for gs(p), if the shock structures (σs , σt

and postshock states) are known.

4. SUMMARY

We have studied the time-dependent evolution of the CR
spectrum at CR-modified shocks in plane-parallel geometry,
in which particles are accelerated to ever higher energies; that
is, the maximum momentum pmax is not prefixed. We adopted
Bohm diffusion as well as the diffusion with the power-law mo-

mentum dependence of κ(p) ∝ pα with 0.5 � α � 1. Thermal
leakage injection of suprathermal particles into the CR pop-
ulation at the subshock and finite Alfvén wave transport are
included. Simulation parameters target nonrelativistic shocks
with M0 � 10 in warm photoionized and hot shock-heated
astrophysical environments with magnetic field strengths some-
what below equipartition with the thermal plasma.

Unlike gasdynamic shocks, the time-asymptotic dynamical
state of the evolving CR-modified shocks under consideration
here cannot be found analytically either from the conservation
equations or from the boundary conditions. So we rely on the
kinetic simulations of diffusive shock acceleration to find the
time-asymptotic state in the self-similar evolution stage. The
general characteristics of the evolution of shock structure and
particle spectrum can be summarized as follows.

1. The width of the precursor, H, scales with the diffusion
length of the most energetic particles and for diffusion that
scales as κ = κ∗(ρ0/ρ)νpα , increases linearly with time,
i.e., H ≈ lmax ≈ 0.1ust , independent of the magnitude (κ∗)
and the value of α.

2. If the acceleration timescale to reach relativistic energies
from injection is much shorter than the dynamical timescale
of the shock system (i.e., κ∗ � 0.1usR, where R is the char-
acteristic size of the shock), the CR pressure at the subshock
approaches a constant value as the Pc at the shock becomes
a significant fraction of the momentum flux through the
shock, ∼ρ0u

2
0. For typical nonrelativistic shocks associated

with cosmic structure, this transition roughly corresponds
to a time when pmax becomes ultrarelativistic. Once this
dynamical equilibrium develops, the shock precursor com-
pression and the subshock jump are steady, leading to a self-
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Figure 12. Time-asymptotic values of postshock gas and CR pressures in units of initial shock ram pressure (left panel), subshock compression ratio (triangles, right
panel), and total compression ratio (circles, right panel) as a function of initial shock Mach number M0 for T6P1d models. The solid lines show our fitting formulas
given in Equations (A8)–(A11). The dotted line shows the estimate given in Equation (A7), adopting the numerical values of σp = σt /σs in Equations (A10) and
(A11).

(A color version of this figure is available in the online journal.)

similar stretching of the precursor with time. Consequently,
the subshock compression ratio, σs , the total compression
ratio, σt , as well as the postshock gas and CR pressures,
Pg,2 and Pc,2, remain constant during the self-similar stage
of the shock.

3. The lowest energy particles diffuse on a scale lmin =
κ(pinj)/us and, so, experience only the compression
across the subshock. Thus, near the injection momentum,
pinj, the CR distribution function is given by f (p) ≈
fs,th(pinj)(p/pinj)−qs where fs,th is the thermal Maxwellian
distribution of the postshock gas and qs = 3σs/(σs − 1).
The amplitude fth(pinj) is determined by the thermal leak-
age injection physics, since that establishes pinj.

4. The most energetic particles diffuse on a scale lmax =
κ(pmax)/us and, so, experience the total compression across
the entire shock structure. Consequently, near pmax, f (p)
flattens to (p/pmax)−qt , where qt = 3σt/(σt − 1). For
p > pmax, f (p) is suppressed by an exponential cutoff.

Considering these facts, we proposed that the CR spectrum
at the subshock for arbitrary time t after self-similar evolution
begins can be described approximately by the following simple
analytic formula:

fs(p, t) =
[
f0 ·

(
p

pinj

)−qs

+ f1 ·
(

p

pmax(t)

)−qt

]

× exp

[
−

(
p

1.5pmax(t)

)2α
]

, (16)

where f0 = fs,th(pinj) and pmax ∝ (
u2

s t
/
κ∗)1/α

is given in
Equation (10). The parameters, pinj, qs, and qt can be estimated
from the shock structure in the self-similar stage using DSA
simulations results as outlined in the Appendix. The amplitude,
f1, has to satisfy the relation gs(pmax) = fs(pmax)p4

max ≈
constant in order for the postshock Pc to remain steady. So,
the momentum distribution function g(p) is shifted to higher
pmax in time, while keeping the amplitude at pmax constant in
the self-similar stage. Hence, pmax is the only time-dependent
parameter in Equation (16).

In a realistic shock geometry, however, CRs may escape up-
stream from the shock due to largest diffusion length approach-
ing the physical size of the shocked system, or due to lack of
scattering waves at resonant scales of most energetic particles.
Once pmax approaches some upper momentum boundary at pup,

the shock structure and the CR spectrum develop steady states
that are approximately the same as the evolving forms with
pmax = pup, except that some differences in the shock structure
due to energy loss from escaping particles. Otherwise, the shock
structure parameters and the approximate analytic form for the
CR spectrum in the self-similar stage are consistent with previ-
ously proposed analytic and semianalytic steady state solutions
(e.g., Berezhko & Ellison 1999; Amato & Blasi 2005).

Finally, we note that the evolution of the CR spectrum is
secular in terms of the variable, Z = ln(p/pinj)/ ln(pmax/pinj),
which alluded wrongfully the self-similar evolution of the partial
pressure function Fs(Z) in Paper I. In fact, there is no similarity
relation between p and t.
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APPENDIX

ANALYTIC APPROXIMATIONS FOR DYNAMICAL
STATES

As we noted in Section 1, there are several analytic and
semianalytic treatments of strong, steady state CR-modified
shocks. The full time-asymptotic state of evolving CR-modified
shocks can be obtained only through numerical simulations
of nonlinear DSA. However, such simulations show strong
similarities between steady state and asymptotic, evolving
shocks. Here we outline some of those basic dynamical relations
as they can be estimated analytically and empirically from our
simulations, as reported in this paper and previously in Paper I.

A key to this comparison is the fact that the timescale for
evolution of the shock precursor is the acceleration timescale
to reach pmax, tacc ∼ 10(lmax/us) (see Equation (9)), which
is characteristically an order of magnitude greater than the
timescale for a fluid element to pass through the precursor,
tdyn ∼ lmax/us . Then, in following a fluid element through the
precursor, one can neglect terms ∂/∂t compared with terms
u∂/∂x in evaluating the Lagrangian time variation, d/dt . For
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example, Equation (3), which can be expressed as

d

dt

(
Pg

ρ5/3

)
= 2

3

W

ρ5/3
, (A1)

assuming γg = 5/3, then gives for an evolving precursor

Pg,1 ≈
(

Pg,0 +
2

5
ρ0u

2
0I

)
σ 5/3

p , (A2)

where σp = ρ1/ρ0 is the precursor compression factor. The
quantity

I = 5

3u3
0ρ

1/3
0

∫ |W |
ρ2/3

dx (A3)

was introduced in Paper I, and measures entropy added by
Alfvén wave dissipation while the fluid element crosses the
precursor, normalized by u2

0ρ0/ρ
5/3
0 . Since Equation (A2) ap-

plies to an evolving shock, the subscripts “0” and “1” refer to
states of a given fluid element as it enters the precursor and as it
reaches the subshock. The approximation comes from neglect-
ing explicit time variations in |W | and ρ in evaluating I. Equation
(A2) is exact for a steady state shock. In the absence of Alfvén
wave dissipation, this equation simply states the properties of
adiabatic compression through the precursor, which obviously
does not depend on the precursor being steady state.

Along similar lines, momentum conservation of a fluid
element passing through the (slowly) evolving precursor gives

Pc,1 + Pg,1 ≈ Pg,0 + ρ0u
2
0

(
1 − 1

σp

)
, (A4)

which can be combined with Equation (A2) to produce a simple
estimate for the CR pressure at the subshock,

Pc,1 = Pc,2 ≈ ρ0u
2
0

[
1 − 1

σp

− 3

5

σ
5/3
p − 1

M2
0

− 2

5
Iσ 5/3

p

]
.

(A5)
By substituting Equation (A5) into Equation (A3) along with
Equation (4), one can obtain

I ≈ 5

3

vA,0

u0

Pc,1

ρ0u
2
0

, (A6)

where, once again, the approximation reflects neglect of explicit
time variation in the shock structure during passage of a fluid
element through the shock. Substituting this back into Equation
(A5) we obtain

Pc,2

ρ0u
2
0

≈
[

1 − 1

σp

− 3

5

σ
5/3
p − 1

M2
0

] [
1 +

2

3

vA,0

u0
σ 5/3

p

]−1

. (A7)

Given Pc,1 = Pc,2 from Equation (A7) and using Equation (A4)
it is straightforward to determine, as well, Pg,1.

Although we can estimate approximately the postshock pres-
sures, Pg,2 and Pc,2, for a given value of precursor compression,
we must rely on numerical simulations to obtain the value of
σp for different model parameters. In the remainder of this ap-
pendix, we present some practical expressions for the shock
dynamical properties obtained in our DSA simulations using a
wide range of Mach numbers for the thermal injection parame-
ter εB = 0.2, the Alfvén wave transport parameter θ = 0.1, and

the diffusion coefficient κ = κ∗p(ρ/ρ0). In Figure 11, the time-
asymptotic values of postshock CR pressure, gas pressure, and
compression ratios are plotted against the initial shock Mach
number (M0 � 1.5).

For M0 � 2.5, the CR modification is negligible, so the
postshock gas pressure and the shock compression ratios σt =
σs are given by the usual Rankine–Hugoniot relation for pure
gasdynamic shocks.

For M0 > 2.5, the numerical results for the postshock gas
pressure can be fitted by

Pg,2

ρ0u
2
s,i

≈ 0.4

(
M0

10

)−0.4

. (A8)

The time-asymptotic density compression ratios can be approx-
imated as follows:

σs ≈ 3.2

(
M0

10

)0.17

for 2.5 � M0 � 10,

(A9)

σs ≈ 3.2

(
M0

10

)0.04

for M0 > 10,

σt ≈ 5.0

(
M0

10

)0.42

for 2.5 � M0 � 10,

(A10)

σt ≈ 5.0

(
M0

10

)0.32

for M0 > 10.

We note that the subshock compression depends only weakly
on M0, while the total compression increases approximately as
M

1/3
0 . Even for strong shocks with M0 up to 100, the total

compression ratio is less than 10, because the propagation
and dissipation of Alfvén waves upstream reduces the CR
acceleration and the precursor compression.

The postshock CR pressure can be fitted empirically as
follows:

Pc,2

ρ0u
2
s,i

≈ 2.34 × 10−2(M0 − 1)3 for 1.5 < M0 < 2.5,

Pc,2

ρ0u
2
s,i

≈ 0.58(M0 − 1)4

M4
0

− 2.14(M0 − 1)3

M4
0

+
13.7(M0 − 1)2

M4
0

(A11)

− 27.0(M0 − 1)

M4
0

+
15.0

M4
0

for 2.5 � M0 � 100,

Pc,2

ρ0u
2
s,i

≈ 0.55 for M0 > 100.

These fits are plotted as solid lines in Figure 12. Since σp =
σt/σs , Equations (A9) and (A10) can be used along with
Equation (A7) to estimate Pc,2 (dotted line in Figure 12).

In Kang et al. (2002), we showed that the effective injection
momentum is pinj/pth ≈ 2.5 for M0 � 10 for the injection
parameter εB = 0.2, where pth = 2

√
kT2/mpc2, and T2 =

(Pg,2/ρ2)(mp/k) is the postshock gas temperature. Then the
thermal distribution at the injection momentum, gs,th(pinj), can
be calculated from the Maxwell distribution, since the postshock
gas states, T2 and ρ2, are known.
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