24 research outputs found

    A low-cost way to reduce greenhouse effects

    Get PDF
    Oak wood precursor was used for preparing low-cost CO2 sorbents. Adsorption is proposed as a cheaper alternative to chemical absorption, which is uneconomical, thus reducing the cost associated with the capture step. The raw material has been carbonised either by pyrolysis or by a hydrothermal carbonisation (HTC). Resulting biochars were then activated using CO2 . Initial chars and their activated counterparts were characterised by SEM imaging and N2 sorption measurements at 77 K. A significant rise in the BET surface area, total pore volume and micropore volume (textural parameters) occurred for all of the pristine chars after the activation process. Fast CO2 sorption kinetics (saturation reached in 3 mins.) and CO2 uptakes of up to ca. 6 wt. % have been measured by thermogravimetric analysis (TGA) at 35 ºC and 1 atm. The activated carbons (ACs) thus synthesised showed competitive performances compared to a commercial AC standard. Although the sorbents’ performances decreased at higher temperatures, they were easily regenerated after the capture stage

    Single-atom spectroscopy of phosphorus dopants implanted into graphene

    Get PDF
    One of the keys behind the success of modern semiconductor technology has been the ion implantation of silicon, which allows its electronic properties to be tailored. For similar purposes, heteroatoms have been introduced into carbon nanomaterials both during growth and using post-growth methods. However, due to the nature of the samples, it has been challenging to determine whether the heteroatoms have been incorporated into the lattice as intended. Direct observations have so far been limited to N and B dopants, and incidental Si impurities. Furthermore, ion implantation of these materials is challenging due to the requirement of very low ion energies and atomically clean surfaces. Here, we provide the first atomic-resolution imaging and electron energy loss spectroscopy (EELS) evidence of phosphorus atoms in the graphene lattice, implanted by low-energy ion irradiation. The measured P L ₂‚₃-edge shows excellent agreement with an ab initio spectrum simulation, conclusively identifying the P in a buckled substitutional configuration. While advancing the use of EELS for single-atom spectroscopy, our results demonstrate the viability of phosphorus as a lattice dopant in sp ²-bonded carbon structures and provide its unmistakable fingerprint for further studies

    Heterogeneous Rate Constant for Amorphous Silica Nanoparticle Adsorption on Phospholipid Monolayers

    Get PDF
    The interaction of amorphous silica nanoparticles with phospholipid monolayers and bilayers has received a great deal of interest in recent years and is of importance for assessing potential cellular toxicity of such species, whether natural or synthesized for the purpose of nanomedical drug delivery and other applications. This present communication studies the rate of silica nanoparticle adsorption on to phospholipid monolayers in order to extract a heterogeneous rate constant from the data. This rate constant relates to the initial rate of growth of an adsorbed layer of nanoparticles as SiO2 on a unit area of the monolayer surface from unit concentration in dispersion. Experiments were carried out using the system of dioleoyl phosphatidylcholine (DOPC) monolayers deposited on Pt/Hg electrodes in a flow cell. Additional studies were carried out on the interaction of soluble silica with these layers. Results show that the rate constant is effectively constant with respect to silica nanoparticle size. This is interpreted as indicating that the interaction of hydrated SiO2 molecular species with phospholipid polar groups is the molecular initiating event (MIE) defined as the initial interaction of the silica particle surface with the phospholipid layer surface promoting the adsorption of silica nanoparticles on DOPC. The conclusion is consistent with the observed significant interaction of soluble SiO2 with the DOPC layer and the established properties of the silica-water interface

    Droplet-based millifluidic synthesis of a proton-conducting sulfonate metal–organic framework

    Get PDF
    Metal–organic frameworks (MOFs) have emerged as promising candidate materials for proton exchange membranes (PEMs), due to the control of proton transport enabled by functional groups and the structural order within the MOFs. In this work, we report a millifluidic approach for the synthesis of a MOF incorporating both sulfonate and amine groups, termed Cu-SAT, which exhibits a high proton conductivity. The fouling-free multiphase flow reactor synthesis was operated for more than 5 h with no reduction in yield or change in the particle size distribution, demonstrating a sustained space–time yield up to 131.7 kg m−3 day−1 with consistent particle quality. Reaction yield and particle size were controllably tuned by the adjustment of reaction parameters, such as residence/reaction time, temperature, and reagent concentration. The reaction yields from the flow reactor were 10–20% higher than those of corresponding batch syntheses, indicating improved mass and heat transfer in flow. A systematic exploration of synthetic parameters using a factorial design of experiments approach revealed the key correlations between the process parameters and yields and particle size distributions. The proton conductivity of the synthesized Cu-SAT MOF was evaluated in a mixed matrix membrane model PEM with polyvinylpyrrolidone and polyvinylidene fluoride polymers, exhibiting a promising composite conductivity of 1.34 ± 0.05 mS cm−1 at 353 K and 95% relative humidity (RH)

    Understanding stress-induced disorder and breakage in organic crystals: beyond crystal structure anisotropy

    Get PDF
    Crystal engineering has advanced the strategies for design and synthesis of organic solids with the main focus being on customising the properties of the materials. Research in this area has a significant impact on large-scale manufacturing, as industrial processes may lead to the deterioration of such properties due to stress-induced transformations and breakage. In this work, we investigate the mechanical properties of structurally related labile multicomponent solids of carbamazepine (CBZ), namely the dihydrate (CBZ·2H2O), a cocrystal of CBZ with 1,4-benzoquinone (2CBZ·BZQ) and the solvates with formamide and 1,4-dioxane (CBZ·FORM and 2CBZ·DIOX, respectively). The effect of factors that are external (e.g. impact stressing) and/or internal (e.g. phase transformations and thermal motion) to the crystals are evaluated. In comparison to the other CBZ multicomponent crystal forms, CBZ·2H2O crystals tolerate less stress and are more susceptible to breakage. It is shown that this poor resistance to fracture may be a consequence of the packing of CBZ molecules and the orientation of the principal molecular axes in the structure relative to the cleavage plane. It is concluded, however, that the CBZ lattice alone is not accountable for the formation of cracks in the crystals of CBZ·2H2O. The strength and the temperature-dependence of electrostatic interactions, such as hydrogen bonds between CBZ and coformer, appear to influence the levels of stress to which the crystals are subjected that lead to fracture. Our findings show that the appropriate selection of coformer in multicomponent crystal forms, targetting superior mechanical properties, needs to account for the intrinsic stress generated by molecular vibrations and not solely by crystal anisotropy. Structural defects within the crystal lattice, although highly influenced by the crystallisation conditions and which are especially difficult to control in organic solids, may also affect breakage

    Droplet-based millifluidic synthesis of a proton-conducting sulfonate metal–organic framework

    Get PDF
    Metal–organic frameworks (MOFs) have emerged as promising candidate materials for proton exchange membranes (PEMs), due to the control of proton transport enabled by functional groups and the structural order within the MOFs. In this work, we report a millifluidic approach for the synthesis of a MOF incorporating both sulfonate and amine groups, termed Cu-SAT, which exhibits a high proton conductivity. The fouling-free multiphase flow reactor synthesis was operated for more than 5 h with no reduction in yield or change in the particle size distribution, demonstrating a sustained space–time yield up to 131.7 kg m−3 day−1 with consistent particle quality. Reaction yield and particle size were controllably tuned by the adjustment of reaction parameters, such as residence/reaction time, temperature, and reagent concentration. The reaction yields from the flow reactor were 10–20% higher than those of corresponding batch syntheses, indicating improved mass and heat transfer in flow. A systematic exploration of synthetic parameters using a factorial design of experiments approach revealed the key correlations between the process parameters and yields and particle size distributions. The proton conductivity of the synthesized Cu-SAT MOF was evaluated in a mixed matrix membrane model PEM with polyvinylpyrrolidone and polyvinylidene fluoride polymers, exhibiting a promising composite conductivity of 1.34 ± 0.05 mS cm−1 at 353 K and 95% relative humidity (RH)

    Electron energy loss spectroscopy in solid-state chemistry

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D59795 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel

    Get PDF
    Abstract The potential for using graphite particles as an internal lubricant during machining is considered. Graphite particles were found to form during graphitisation of experimental medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly influenced by the starting microstructure, whether ferrite-pearlite, bainite or martensite, as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite-pearlite starting microstructure were, not unexpectedly, found to be located within pearlite colonies, no doubt due to the presence of abundant cementite as a source of carbon. In consequence, the final distribution of graphite nodules in ferrite-pearlite microstructures was less uniform than for the bainite microstructure studied. In the case of martensite, this study found a predominance of nucleation at grain boundaries, again leading to less uniform graphite dispersions

    Hydrothermal Synthesis and Phase Formation Mechanism of TiO2(B) Nanorods via Alkali Metal Titanate Phase Transformation

    No full text
    Titanium dioxide (B phase) with 1-D structures was successfully fabricated via a hydrothermal method with a subsequent ion-exchange process and calcination. P25, titanium isopropoxide (TTIP), rutile and also anatase were used as Ti precursors in the alkali hydrothermal system. TTIP promoted an elongation of nanorod morphology whereas the other precursors produced short nanorod structures. The different types of titanium precursors did not have any influence on the phase transformation during the fabrication process. Na2Ti6O13 was the primary intermediate product after washing the hydrothermal sample. H2Ti3O7 was the secondary intermediate phase obtained following proton-exchange of Na2Ti6O13 in HNO3 solution. Finally, the TiO2(B) phase was the product of calcination of the secondary intermediate product at 400°C for 5 hr. A phase transformation mechanism is presented based on an investigation of products at each of the steps. The effects of the synthesis conditions on tailoring of the crystal morphology are discussed. The growth direction of the TiO2(B) nanorods was investigated by HR-TEM and SADP. Finally, the metastable phase of TiO2(B) was shown to be transformed to anatase during thermal treatment at temperatures higher than 400°C

    Factors affecting electron beam damage in calcite nanoparticles

    No full text
    We report electron fluence thresholds for the degradation of calcite nanoparticles under electron irradiation by both conventional and scanning TEM (CTEM and STEM), using time resolved phase contrast imaging and EDX spectroscopy at both 80 kV and 300 kV accelerating voltages. We show that the degradation pathway of calcite involves disruption of the crystal lattice with the evolution of pores and transformation to calcium oxide and carbon dioxide. Depending on irradiation conditions (CTEM or STEM), the calcium oxide formed can be either amorphous or crystalline, with the formation of the latter apparently being hindered by hydrocarbon contamination build up in STEM. For a given electron flux, irradiation at 300 kV prolongs the characteristic lifetime of the calcite lattice as compared to irradiation at 80 kV but with a corresponding reduction in both image contrast and energy dispersive X-ray (EDX) signal, consistent with the change in inelastic mean free path for electron scattering. STEM offers significant benefits over CTEM, however only in the presence of hydrocarbon contamination, increasing the fluence threshold for the detection of irradiation induced faults in the calcite lattice from 2.7x10^7 e-nm-2 for 300 kV CTEM to over 1.8x10^8 e-nm-2 for 300 kV STEM. This work forms a framework for reliable identification of discrete particle crystallinity in nominally amorphous, nanoscale calcium carbonate particles which is of importance for fundamental studies of crystallisation and also for the process control during the synthesis of such surfactant stabilised nanoparticles for application as over-based fuel detergents
    corecore