340 research outputs found

    Blow-up solutions for linear perturbations of the Yamabe equation

    Full text link
    For a smooth, compact Riemannian manifold (M,g) of dimension N \geg 3, we are interested in the critical equation Δgu+(N−2/4(N−1)Sg+Ï”h)u=uN+2/N−2inM,u>0inM,\Delta_g u+(N-2/4(N-1) S_g+\epsilon h)u=u^{N+2/N-2} in M, u>0 in M, where \Delta_g is the Laplace--Beltrami operator, S_g is the Scalar curvature of (M,g), h∈C0,α(M)h\in C^{0,\alpha}(M), and Ï”\epsilon is a small parameter

    Four-body effects on 9Be + 208Pb scattering and fusion around the Coulomb barrier

    Full text link
    We investigate the 9Be + 208Pb elastic scattering and fusion at energies around the Coulomb barrier. The 9^9Be nucleus is described in a \alpha + \alpha + n three-body model, using the hyperspherical coordinate method. The scattering with 208^{208}Pb is then studied with the Continuum Discretized Coupled Channel (CDCC) method, where the \alpha + \alpha + n continuum is approximated by a discrete number of pseudostates. Optical potentials for the α+208\alpha+^{208}Pb and n+208n+^{208}Pb systems are taken from the literature. We present elastic-scattering and fusion cross sections at different energies, and investigate the convergence with respect to the truncation of the \alpha + \alpha + n continuum. A good agreement with experiment is obtained, considering that there is no parameter fitting. We show that continuum effects increase at low energies.Comment: 6 pages, 4 figures. Submitted to the proceedings of the "NUBA Conference Series -1: Nuclear Physics and Astrophysics" Adrasan-Antalya, Turkey, September 15-21, 201

    Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary

    Full text link
    Let (M,g) be a smooth compact, n dimensional Riemannian manifold, n=3,4 with smooth n-1 dimensional boundary. We search the positive solutions of the singularly perturbed Klein Gordon Maxwell Proca system with homogeneous Neumann boundary conditions or for the singularly perturbed Klein Gordon Maxwell system with mixed Dirichlet Neumann homogeneous boundary conditions. We prove that stable critical points of the mean curvature of the boundary generates solutions when the perturbation parameter is sufficiently small.Comment: arXiv admin note: text overlap with arXiv:1410.884

    Sharp constants in weighted trace inequalities on Riemannian manifolds

    Full text link
    We establish some sharp weighted trace inequalities W^{1,2}(\rho^{1-2\sigma}, M)\hookrightarrow L^{\frac{2n}{n-2\sigma}}(\pa M) on n+1n+1 dimensional compact smooth manifolds with smooth boundaries, where ρ\rho is a defining function of MM and σ∈(0,1)\sigma\in (0,1). This is stimulated by some recent work on fractional (conformal) Laplacians and related problems in conformal geometry, and also motivated by a conjecture of Aubin.Comment: 34 page

    Quantization for an elliptic equation of order 2m with critical exponential non-linearity

    Full text link
    On a smoothly bounded domain Ω⊂R2m\Omega\subset\R{2m} we consider a sequence of positive solutions uk⇁w0u_k\stackrel{w}{\rightharpoondown} 0 in Hm(Ω)H^m(\Omega) to the equation (−Δ)muk=λkukemuk2(-\Delta)^m u_k=\lambda_k u_k e^{mu_k^2} subject to Dirichlet boundary conditions, where 0<λk→00<\lambda_k\to 0. Assuming that Λ:=lim⁥k→∞∫Ωuk(−Δ)mukdx<∞,\Lambda:=\lim_{k\to\infty}\int_\Omega u_k(-\Delta)^m u_k dx<\infty, we prove that Λ\Lambda is an integer multiple of \Lambda_1:=(2m-1)!\vol(S^{2m}), the total QQ-curvature of the standard 2m2m-dimensional sphere.Comment: 33 page

    A compactness theorem for scalar-flat metrics on manifolds with boundary

    Full text link
    Let (M,g) be a compact Riemannian manifold with boundary. This paper is concerned with the set of scalar-flat metrics which are in the conformal class of g and have the boundary as a constant mean curvature hypersurface. We prove that this set is compact for dimensions greater than or equal to 7 under the generic condition that the trace-free 2nd fundamental form of the boundary is nonzero everywhere.Comment: 49 pages. Final version, to appear in Calc. Var. Partial Differential Equation

    Use of partial least squares regression to impute SNP genotypes in Italian Cattle breeds

    Get PDF
    Background The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Methods Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. Results In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Conclusions Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available

    Precision of genetic parameters and breeding values estimated in marker assisted BLUP genetic evaluation

    Get PDF
    In practical implementations of marker-assisted selection economic and logistic restrictions frequently lead to incomplete genotypic data for the animals of interest. This may result in bias and larger standard errors of the estimated parameters and, as a consequence, reduce the benefits of applying marker-assisted selection. Our study examines the impact of the following factors: phenotypic information, depth of pedigree, and missing genotypes in the application of marker-assisted selection. Stochastic simulations were conducted to generate a typical dairy cattle population. Genetic parameters and breeding values were estimated using a two-step approach. First, pre-corrected phenotypes (daughter yield deviations (DYD) for bulls, yield deviations (YD) for cows) were calculated in polygenic animal models for the entire population. These estimated phenotypes were then used in marker assisted BLUP (MA-BLUP) evaluations where only the genotyped animals and their close relatives were included

    Breakup reaction models for two- and three-cluster projectiles

    Full text link
    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroedinger equation is solved with the projectile continuum approximated by square-integrable states. These models are first illustrated by applications to two-cluster projectiles for studies of nuclei far from stability and of reactions useful in astrophysics. Recent extensions to three-cluster projectiles, like two-neutron halo nuclei, are then presented and discussed. We end this review with some views of the future in breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be published as a volume of "Lecture Notes in Physics" (Springer

    Design of a Bovine Low-Density SNP Array Optimized for Imputation

    Get PDF
    The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle
    • 

    corecore