156 research outputs found

    A new technique for infrared scintillation measurements

    Get PDF
    We propose a new technique to measure the infrared scintillation light yield of rare earth (RE) doped crystals by comparing it to near UV-visible scintillation of a calibrated Pr:(Lu0.75_{0.75}Y0.25_{0.25})3_{3}Al5_5O12_{12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to \SI{1700}{nm} of this crystal.Comment: submitted to NIM

    X-ray Scintillation in Lead Halide Perovskite Crystals

    Get PDF
    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications

    BaWO4:Ce Single Crystals Codoped with Na Ions

    Get PDF
    Single crystals of BaWO4, BaWO4:0.5at.%Ce; BaWO4:1at.%Ce; BaWO4:0.5at.%Ce,1at.%Na; and BaWO4:1at.%Ce,2at.%Na were grown from an inductively heated iridium crucible by the Czochralski method on a Malvern MSR4 puller. They were investigated using Electron Paramagnetic Resonance (EPR) spectroscopy at helium temperatures. One isolated center of high (D2d or S4) symmetry was found and two or more other centers of lower symmetry were identified, depending on crystal doping. From the fitting using the EPR-NMR program, the following parameters of g-matrix for the high symmetry center were found: gx = 1.505, gy = 1.505, and gz = 2.731. The linewidth vs. temperature revealed an increasing exponential tendency with increasing temperature. It showed one phonon at the lower temperatures and a Raman + Orbach effect at the higher temperatures. Radioluminescence and pulse height spectra showed rather poor scintillation properties, without any contribution from cerium emission

    The Deformation Stimulated Luminescence in KCl, KBr and KI Crystals

    Get PDF
    Currently, strengthening of the intensity of luminescence in alkali halide crystals (AHC) at lattice symmetry lowering is discussed as a promising direction for the development of scintillation detectors. In this regard, for the study of anion excitons and radiation defects in the AHC anion sublattice at deformation, the crystals with the same sizes of cations and different sizes of anions were chosen. In the X-ray spectra of KCl at 10 K, the luminescence at 3.88 eV; 3.05 eV and 2.3 eV is clearly visible. The luminescence at 3.05 eV corresponds to the tunneling recharge [F*, H]. Luminescence at 3.88 eV is quenched in the region of thermal destruction of F'-centers and characterizes tunneling recharge of F', VK-centers. In KCl at 90 K, the luminescence of self-trapped excitons (STE) is completely absent. In KBr at deformation not only STE luminescence, but also deformation stimulated luminescence at 3.58 eV were recorded, the last one corresponds to tunneling recharge of F', VK-centers. In KI crystal at 10 K and 90 K at deformation, only STE luminescence is enhanced. There are no deformation luminescence bands in KI compares with KBr and KCl crystals

    A deeper insight into (Lu,Y)AG : Pr scintillator crystals

    Get PDF
    Interior of Czochralski-grown (Lu,Y)AG:Pr crystals has been examined by means of several techniques, such as X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, Time-of-Flight Secondary Ion Mass Spectrometry, and magnetic susceptibility measurements. Additionally, their luminescence has been monitored at various combinations of a double-beam (X-ray/IR) excitation

    A Deeper Insight into (Lu,Y)AG:Pr Scintillator Crystals

    Get PDF
    Interior of Czochralski-grown (Lu,Y)AG:Pr crystals has been examined by means of several techniques, such as X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, Time-of-Flight Secondary Ion Mass Spectrometry, and magnetic susceptibility measurements. Additionally, their luminescence has been monitored at various combinations of a double-beam (X-ray/IR) excitation

    Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr

    Get PDF
    Configuration interaction (CI) calculations in atoms with two valence electrons, carried out in the V(N-2) Hartree-Fock potential of the core, are corrected for core-valence interactions using many-body perturbation theory (MBPT). Two variants of the mixed CI+MBPT theory are described and applied to obtain energy levels and transition amplitudes for Be, Mg, Ca, and Sr

    EXCITED STATE ABSORPTION AND THERMOLUMINESCENCE IN Ce AND Mg DOPED YTTRIUM ALUMINUM GARNET*

    Get PDF
    In this paper we report preliminary results of optical studies on Y3 Al5012 (YAG) crystals codoped with Ce and Mg. By using measurements of luminescence, absorption, and luminescence excitation spectra we demonstrate that although the basic features introduced to the YAG host by the Ce-doping remain intact, the Mg-codoping imposes some significant changes on other properties of the material. These changes are potentially important for laser and/or scintillator applications of YAG:Ce and are due, most likely, to modifications of defect populations in the material. We characterize them by using the techniques of thermoluminescence and excited state absorption under excimer laser pumping. These techniques, interestingly, yield results that seem inconsistent. While the thermoluminescence signal of the Mg-doped sample is strongly reduced, suggesting that trap concentrations in the presence of Mg are suppressed, the excited state absorption signal, which we also relate to the traps, is higher. We offer a tentative explanation of this contradiction between the two experiments that involves a massive transfer of electrons from the Mg-related defects to the excited state absorption centers caused by the excimer pump itself

    Increasing transnational sea‐ice exchange in a changing Arctic Ocean

    Get PDF
    The changing Arctic sea‐ice cover is likely to impact the trans‐border exchange of sea ice between the exclusive economic zones (EEZs) of the Arctic nations, affecting the risk of ice‐rafted contamination. We apply the Lagrangian Ice Tracking System (LITS) to identify sea‐ice formation events and track sea ice to its melt locations. Most ice (52%) melts within 100 km of where it is formed; ca. 21% escapes from its EEZ. Thus, most contaminants will be released within an ice parcel's originating EEZ, while material carried by over 1 00,000 km2 of ice—an area larger than France and Germany combined—will be released to other nations' waters. Between the periods 1988–1999 and 2000–2014, sea‐ice formation increased by ∼17% (roughly 6 million km2 vs. 5 million km2 annually). Melting peaks earlier; freeze‐up begins later; and the central Arctic Ocean is more prominent in both formation and melt in the later period. The total area of ice transported between EEZs increased, while transit times decreased: for example, Russian ice reached melt locations in other nations' EEZs an average of 46% faster while North American ice reached destinations in Eurasian waters an average of 37% faster. Increased trans‐border exchange is mainly a result of increased speed (∼14% per decade), allowing first‐year ice to escape the summer melt front, even as the front extends further north. Increased trans‐border exchange over shorter times is bringing the EEZs of the Arctic nations closer together, which should be taken into account in policy development—including establishment of marine‐protected areas

    Lithium-Doped Two-Dimensional Perovskite Scintillator for Wide-Range Radiation Detection

    Get PDF
    Two-dimensional lead halide perovskites have demonstrated their potential as high-performance scintillators for X- and gamma-ray detection, while also being low-cost. Here we adopt lithium chemical doping in two-dimensional phenethylammonium lead bromide (PEA)2PbBr4 perovskite crystals to improve the properties and add functionalities with other radiation detections. Li doping is confirmed by X-ray photoemission spectroscopy and the scintillation mechanisms are explored via temperature dependent X-ray and thermoluminescence measurements. Our 1:1 Li-doped (PEA)2PbBr4 demonstrates a fast decay time of 11 ns (80%), a clear photopeak with an energy resolution of 12.4%, and a scintillation yield of 11,000 photons per MeV under 662 keV gamma-ray radiation. Additionally, our Li-doped crystal shows a clear alpha particle/gamma-ray discrimination and promising thermal neutron detection through 6Li enrichment. X-ray imaging pictures with (PEA)2PbBr4 are also presented. All results demonstrate the potential of Li-doped (PEA)2PbBr4 as a versatile scintillator covering a wide radiation energy range for various applications
    corecore