1,083 research outputs found

    MANAGEMENT ENVIRONMENTAL ACTIVITIES EFFICIENCY IN THE RAILWAY ENTERPRISES

    Get PDF
    The article describes the development trend of environmental management systems in railway transport and the importance of the impact of transport factors to ensure ecological and economic security of the society. Development management instrumentation of processing of environmental systems in railway transport is aimed at maintaining the global interest in reducing pollution and possible damage of the environment to ensure ecological and economic security of the country. The main objective of the development of environmental management systems in railway transport should be inextricably linked with the main goal of the human ecology. The basis of the human ecology is to maintain equilibrium within humanity and the outside world and its environment. Improving environmental activities of the company is achieved by applying a systematic approach. The proposed criteria for evaluating the best project options and directions of improvement of greening the economy are the basis for the establishment of a mechanism of transition to sustainable development of railway industry. The authors of the analysis of ecological and economic indicators of the enterprises of the railway industry and ecological and economic assessment of investment in the environmental management system in railway transport from In the article the formation of approaches to environmental management decisions at the enterprises of the railway industry was substantiated.The article describes the development trend of environmental management systems in railway transport and the importance of the impact of transport factors to ensure ecological and economic security of the society. Development management instrumentation of processing of environmental systems in railway transport is aimed at maintaining the global interest in reducing pollution and possible damage of the environment to ensure ecological and economic security of the country. The main objective of the development of environmental management systems in railway transport should be inextricably linked with the main goal of the human ecology. The basis of the human ecology is to maintain equilibrium within humanity and the outside world and its environment. Improving environmental activities of the company is achieved by applying a systematic approach. The proposed criteria for evaluating the best project options and directions of improvement of greening the economy are the basis for the establishment of a mechanism of transition to sustainable development of railway industry. The authors of the analysis of ecological and economic indicators of the enterprises of the railway industry and ecological and economic assessment of investment in the environmental management system in railway transport from In the article the formation of approaches to environmental management decisions at the enterprises of the railway industry was substantiated

    Extra Spin-Wave mode in Quantum Hall systems. Beyond the Skyrmion Limit

    Full text link
    We report on the observation of a new spin mode in a quantum Hall system in the vicinity of odd electron filling factors under experimental conditions excluding the possibility of Skyrmion excitations. The new mode having presumably zero energy at odd filling factors emerges at small deviations from odd filling factors and couples to the spin-exciton. The existence of an extra spin mode assumes a nontrivial magnetic order at partial fillings of Landau levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal.Comment: 9 pages, 4 figure

    Spectroscopy of H3_3S: evidence of a new energy scale for superconductivity

    Full text link
    The discovery of a superconducting phase in sulfur hydride under high pressure with a critical temperature above 200 K has provided a new impetus to the search for even higher TcT_c. Theory predicted and experiment confirmed that the phase involved is H3_3S with Im-3m crystal structure. The observation of a sharp drop in resistance to zero at TcT_c, its downward shift with magnetic field and a Meissner effect confirm superconductivity but the mechanism involved remains to be determined. Here, we provide a first optical spectroscopy study of this new superconductor. Experimental results for the optical reflectivity of H3_3S, under high pressure of 150 GPa, for several temperatures and over the range 60 to 600 meV of photon energies, are compared with theoretical calculations based on Eliashberg theory using DFT results for the electron-phonon spectral density α2\alpha^2F(Ω\Omega). Two significant features stand out: some remarkably strong infrared active phonons at \approx 160 meV and a band with a depressed reflectance in the superconducting state in the region from 450 meV to 600 meV. In this energy range, as predicted by theory, H3_3S is found to become a better reflector with increasing temperature. This temperature evolution is traced to superconductivity originating from the electron-phonon interaction. The shape, magnitude, and energy dependence of this band at 150 K agrees with our calculations. This provides strong evidence of a conventional mechanism. However, the unusually strong optical phonon suggests a contribution of electronic degrees of freedom.Comment: 10 pages, 8 figures. Main manuscript and supplementary informatio

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Fourth Order Algorithms for Solving the Multivariable Langevin Equation and the Kramers Equation

    Get PDF
    We develop a fourth order simulation algorithm for solving the stochastic Langevin equation. The method consists of identifying solvable operators in the Fokker-Planck equation, factorizing the evolution operator for small time steps to fourth order and implementing the factorization process numerically. A key contribution of this work is to show how certain double commutators in the factorization process can be simulated in practice. The method is general, applicable to the multivariable case, and systematic, with known procedures for doing fourth order factorizations. The fourth order convergence of the resulting algorithm allowed very large time steps to be used. In simulating the Brownian dynamics of 121 Yukawa particles in two dimensions, the converged result of a first order algorithm can be obtained by using time steps 50 times as large. To further demostrate the versatility of our method, we derive two new classes of fourth order algorithms for solving the simpler Kramers equation without requiring the derivative of the force. The convergence of many fourth order algorithms for solving this equation are compared.Comment: 19 pages, 2 figure

    The space physics environment data analysis system (SPEDAS)

    Get PDF
    With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.Published versio

    Non-equilibrium phase transition in a sheared granular mixture

    Full text link
    The dynamics of an impurity (or tracer particle) immersed in a dilute granular gas under uniform shear flow is investigated. A non-equilibrium phase transition is identified from an exact solution of the inelastic Boltzmann equation for a granular binary mixture in the tracer limit, where the impurity carries either a vanishing (disordered phase) or a finite (ordered phase) fraction of the total kinetic energy of the system. In the disordered phase, the granular temperature ratio (impurity "temperature" over that of the host fluid) is finite, while it diverges in the ordered phase. To correctly capture this extreme violation of energy equipartition, we show that the picture of an impurity enslaved to the host fluid is insufficient

    The use of titanium alloys for details of downhole hammers

    Get PDF
    The influence of cementation technology of titanium alloy Ti-Al-Mn on its wear resistance is studied. It is established that after lubrication a friction pair with mineral oil the wear resistance of the cemented titanium alloy is comparable to wear resistance of the tempered steel 12HN3A, and in water medium surpasses it by 1.5 times. Decrease in the tendency to seizure with steel is the main reason for increase of wear resistance of titanium alloy. Industrial tests of the ASH43 hammer have shown that the use of titanium alloys for the manufacture of hammer strikers allows to increase impact capacity by 1.5 times and to increase drilling rate by 30 % compared to hammers with steel strikers

    Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    Get PDF
    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes

    High-Energy Approach for Heavy-Ion Scattering with Excitations of Nuclear Collective States

    Full text link
    A phenomenological optical potential is generalized to include the Coulomb and nuclear interactions caused by the dynamical deformation of its surface. In the high-energy approach analytical expressions for elastic and inelastic scattering amplitudes are obtained where all the orders in the deformation parameters are included. The multistep effect of the 2+^+ rotational state excitation on elastic scattering is analyzed. Calculations of inelastic cross sections for the 17^{17}O ions scattered on different nuclei at about hundred Mev/nucleon are compared with experimental data, and important role of the Coulomb excitation is established.Comment: 9 pages; 3 figures. Submitted to the Physics of Atomic Nucle
    corecore