16 research outputs found

    Rare genetic susceptibility variants assessment in autism spectrum disorder: detection rate and practical use

    No full text
    International audienceAutism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component whose knowledge evolves quickly. Next-generation sequencing is the only effective technology to deal with the high genetic heterogeneity of ASD in a clinical setting. However, rigorous criteria to classify rare genetic variants conferring ASD susceptibility are currently lacking. We have performed whole-exome sequencing to identify both nucleotide variants and copy number variants (CNVs) in 253 ASD patients, including 68 patients with intellectual disability (ID) and 90 diagnosed as Asperger syndrome. Using explicit criteria to classify both susceptibility genes and susceptibility variants we prioritized 217 genes belonging to the following categories: syndromic genes, genes with an excess of de novo protein truncating variants and genes targeted by rare CNVs. We obtained a susceptibility variant detection rate of 19.7% (95% CI: [15–25.2%]). The rate for CNVs was 7.1% (95% CI: [4.3–11%]) and 12.6% (95% CI: [8.8–17.4%]) for nucleotide variants. The highest rate (30.1%, 95% CI: [20.2–43.2%]) was obtained in the ASD + ID subgroup. A strong contributor for at risk nucleotide variants was the recently identified set of genes (n = 81) harboring an excess of de novo protein truncating variants. Since there is currently no evidence that the genes targeted here are necessary and sufficient to cause ASD, we recommend to avoid the term “causative of ASD” when delivering the information about a variant to a family and to use instead the term “genetic susceptibility factor contributing to ASD”

    Type I hyperprolinemia: genotype/phenotype correlations.

    Full text link
    Type I hyperprolinemia (HPI) is an autosomal recessive disorder associated with cognitive and psychiatric troubles, caused by alterations of the Proline Dehydrogenase gene (PRODH) at 22q11. HPI results from PRODH deletion and/or missense mutations reducing proline oxidase (POX) activity. The goals of this study were first to measure in controls the frequency of PRODH variations described in HPI patients, second to assess the functional effect of PRODH mutations on POX activity, and finally to establish genotype/enzymatic activity correlations in a new series of HPI patients. Eight of 14 variants occurred at polymorphic frequency in 114 controls. POX activity was determined for six novel mutations and two haplotypes. The c.1331G>A, p.G444D allele has a drastic effect, whereas the c.23C>T, p.P8L allele and the c.[56C>A; 172G>A], p.[Q19P; A58T] haplotype result in a moderate decrease in activity. Among the 19 HPI patients, 10 had a predicted residual activity or = 50% bore at least one c.824C>A, p.T275N allele, which has no detrimental effect on activity but whose frequency in controls is only 3%. Our results suggest that PRODH mutations lead to a decreased POX activity or affect other biological parameters causing hyperprolinemia

    TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assemblymechanisms in motile cilia versus flagella

    No full text
    International audienceCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs/IDAs). Defects in ODAs/IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. To date PCD mutations in assembly factors cause a combined ODA/IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the sole absence of IDAs in respiratory cilia. We analysed both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach, as well as TTC12 depletion in the ciliated model, Paramecium tetraureli. Our results revealed an IDA defect restricted to a subset of single-headed IDAs different in flagella and cilia, while TTC12 depletion in Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a new gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella

    TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assemblymechanisms in motile cilia versus flagella

    No full text
    International audienceCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs/IDAs). Defects in ODAs/IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. To date PCD mutations in assembly factors cause a combined ODA/IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the sole absence of IDAs in respiratory cilia. We analysed both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach, as well as TTC12 depletion in the ciliated model, Paramecium tetraureli. Our results revealed an IDA defect restricted to a subset of single-headed IDAs different in flagella and cilia, while TTC12 depletion in Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a new gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella

    TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assemblymechanisms in motile cilia versus flagella

    No full text
    International audienceCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs/IDAs). Defects in ODAs/IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. To date PCD mutations in assembly factors cause a combined ODA/IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the sole absence of IDAs in respiratory cilia. We analysed both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach, as well as TTC12 depletion in the ciliated model, Paramecium tetraureli. Our results revealed an IDA defect restricted to a subset of single-headed IDAs different in flagella and cilia, while TTC12 depletion in Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a new gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella

    MOLECULAR SCREENING OF ADAMTSL2 GENE IN 33 PATIENTS REVEALS THE GENETIC HETEROGENEITY OF GELEOPHYSIC DYSPLASIA

    No full text
    International audienceGeleophysic dysplasia (OMIM 231050, GD) is an autosomal recessive disorder characterized by short stature, small hands and feet, stiff joints and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2 gene (ADAMTSL2). Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n=20, also including the 6 patients from our previous study) and group 2, patients without ADAMTSL2 mutations (n=19). We found that the main discriminating features were facial dysmorphism and tip-toe walking, almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness and radiographic features. We conclude that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene

    TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assemblymechanisms in motile cilia versus flagella

    No full text
    International audienceCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs/IDAs). Defects in ODAs/IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. To date PCD mutations in assembly factors cause a combined ODA/IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the sole absence of IDAs in respiratory cilia. We analysed both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach, as well as TTC12 depletion in the ciliated model, Paramecium tetraureli. Our results revealed an IDA defect restricted to a subset of single-headed IDAs different in flagella and cilia, while TTC12 depletion in Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a new gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella

    TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assemblymechanisms in motile cilia versus flagella

    No full text
    International audienceCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs/IDAs). Defects in ODAs/IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. To date PCD mutations in assembly factors cause a combined ODA/IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the sole absence of IDAs in respiratory cilia. We analysed both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach, as well as TTC12 depletion in the ciliated model, Paramecium tetraureli. Our results revealed an IDA defect restricted to a subset of single-headed IDAs different in flagella and cilia, while TTC12 depletion in Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a new gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella

    TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assemblymechanisms in motile cilia versus flagella

    No full text
    International audienceCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs/IDAs). Defects in ODAs/IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. To date PCD mutations in assembly factors cause a combined ODA/IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the sole absence of IDAs in respiratory cilia. We analysed both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach, as well as TTC12 depletion in the ciliated model, Paramecium tetraureli. Our results revealed an IDA defect restricted to a subset of single-headed IDAs different in flagella and cilia, while TTC12 depletion in Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a new gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella

    TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assemblymechanisms in motile cilia versus flagella

    No full text
    International audienceCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs/IDAs). Defects in ODAs/IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. To date PCD mutations in assembly factors cause a combined ODA/IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the sole absence of IDAs in respiratory cilia. We analysed both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach, as well as TTC12 depletion in the ciliated model, Paramecium tetraureli. Our results revealed an IDA defect restricted to a subset of single-headed IDAs different in flagella and cilia, while TTC12 depletion in Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a new gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella
    corecore