231 research outputs found

    Are we seeing accretion flows in a 250kpc-sized Ly-alpha halo at z=3?

    Full text link
    Using MUSE on the ESO-VLT, we obtained a 4 hour exposure of the z=3.12 radio galaxy MRC0316-257. We detect features down to ~10^-19 erg/s/cm^2/arcsec^2 with the highest surface brightness regions reaching more than a factor of 100 higher. We find Ly-alpha emission out to ~250 kpc in projection from the active galactic nucleus (AGN). The emission shows arc-like morphologies arising at 150-250 kpc from the nucleus in projection with the connected filamentary structures reaching down into the circum-nuclear region. The most distant arc is offset by 700 km/s relative to circum-nuclear HeII 1640 emission, which we assume to be at the systemic velocity. As we probe emission closer to the nucleus, the filamentary emission narrows in projection on the sky, the relative velocity decreases to ~250 km/s, and line full-width at half maximum range from 300-700 km/s. From UV line ratios, the emission on scales of 10s of kpc from the nucleus along a wide angle in the direction of the radio jets is clearly excited by the radio jets and ionizing radiation of the AGN. Assuming ionization equilibrium, the more extended emission outside of the axis of the jet direction would require 100% or more illumination to explain the observed surface brightness. High speed (>300 km/s) shocks into rare gas would provide sufficiently high surface brightness. We discuss the possibility that the arcs of Ly-alpha emission represent accretion shocks and the filamentary emission represent gas flows into the halo, and compare our results with gas accretion simulations.Comment: 4 pages, 2 figures, 1 table, A&A letters accepte

    γ spectroscopy of 25 , 27 Ne and 26 , 27 Na

    Get PDF
    The γ spectroscopy of 25, 27 Ne and 26, 27 Na was studied from the reaction of 26 Ne with a deuterium target in inverse kinematics at 9.7 MeV/nucleon. The selectivity of the (d,p), (d,t), and (d,n) transfer reactions provides new spectroscopic information on low-lying states. The validity of the sd shell-model space for these nuclei isdiscussed

    Development of a tracking system of exotic nuclear beams for FAIR

    Get PDF
    New accelerators like SPIRAL2 (GANIL, France) or FAIR (GSI, Germany) will be soon constructed, and they will be able to produce radioactive ion beams (RIB) with high intensities of current (≥106pps). These beams, at low energy, lower than 20 MeV/n, usually have high emittance, which imposes the use of tracking detectors before the target in order to reconstruct the trajectory of the ions. The group of Nuclear Physics at CNA (Centro Nacional de Aceleradores), is in charge of developing a tracking system for the low energy branch of FAIR (the HISPEC/DESPEC project). A collaboration with CEA-SACLAY was established, with the aim of developing, building and testing low pressure Secondary electron Detectors (SeD). Within this proposal we have projected and constructed a new Nuclear Physics Line in the CNA in order to be able to receive any kind of detector tests and the associated nuclear instruments

    New Radio-Loud QSOs at the end of the Re-ionisation Epoch

    Full text link
    We present the selection of high-redshift (z5.7z\gtrsim5.7) radio-loud (RL) quasi-stellar object (QSO) candidates from the combination of the radio Rapid ASKAP Continuum Survey (RACS; at 888 MHz) and the optical/near-infrared Dark Energy Survey (DES). In particular, we selected six candidates brighter than S888MHz>1S_{\rm 888MHz}>1 mJy beam1^{-1} and mag(zDES)<21.3{\rm mag}(z_\mathrm{{DES}})<21.3 using the dropout technique (in the ii-band). From this sample, we were able to confirm the high-zz nature (z6.1z\sim6.1) of two sources, which are now among the highest-redshift RL QSOs currently known. Based on our Gemini-South/GMOS observations, neither object shows a prominent Lyα\alpha emission line. This suggests that both sources are likely to be weak emission-line QSOs hosting radio jets and would therefore further strengthen the potential increase of the fraction of weak emission-line QSOs recently found in the literature. However, further multiwavelength observations are needed to constrain the properties of these QSOs and of their relativistic jets. From the discovery of these two sources, we estimated the space density of RL QSOs in the redshift range 5.9<z<6.45.9<z<6.4 to be 0.130.09+0.18^{+0.18}_{-0.09} and found it to be consistent with the expectations based on our current knowledge of the blazar population up to z5z\sim5.Comment: Accepted in MNRAS on 05 December 2022. Ten pages with five figures and three table

    The Herschel view of the environment of the radio galaxy 4C+41.17 at z = 3.8

    Get PDF
    We present Herschel observations at 70, 160, 250, 350 and 500 μm of the environment of the radio galaxy 4C+41.17 at z = 3.792. About 65 per cent of the extracted sources are securely identified with mid-infrared sources observed with the Spitzer Space Telescope at 3.6, 4.5, 5.8, 8 and 24 μm. We derive simple photometric redshifts, also including existing 850 and 1200 μm data, using templates of active galactic nuclei, starburst-dominated systems and evolved stellar populations. We find that most of the Herschel sources are foreground to the radio galaxy and therefore do not belong to a structure associated with 4C+41.17. We do, however, find that the spectral energy distribution (SED) of the closest (∼25 arcsec offset) source to the radio galaxy is fully consistent with being at the same redshift as 4C+41.17. We show that finding such a bright source that close to the radio galaxy at the same redshift is a very unlikely event, making the environment of 4C+41.17 a special case. We demonstrate that multiwavelength data, in particular on the Rayleigh–Jeans side of the SED, allow us to confirm or rule out the presence of protocluster candidates that were previously selected by single wavelength data setsPeer reviewe

    Optical studies for the super separator spectrometer S3

    Get PDF
    International audienceS3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper

    Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber

    Full text link
    Dedicated ionization chamber was built and installed to measure the energy loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse kinematics (beam of 208Pb). After going through the ionization chamber, products of reactions on 12C, 18O targets are implanted in a Si detector. Their identification through their alpha decay chain is ambiguous when their half-life is short. After calibration with Pb and Th nuclei, the ionization chamber signal allowed us to resolve these ambiguities. In the search for rare super-heavy nuclei produced in fusion reactions in inverse or symmetric kinematics, such a chamber will provide direct information on the nuclear charge of each implanted nucleus.Comment: submitted to NIMA, 10 pages+4 figures, Latex, uses elsart.cls and grahpic

    Long lifetime components in the decay of excited super-heavy nuclei

    Get PDF
    For nuclear reactions in which super-heavy nuclei can be formed, the essential difference between the fusion process followed by fission and non-equilibrium processes leading to fission-like fragments is there action time. Quite probable non-equilibrium

    Probing the 6He halo structure with elastic and inelastic proton scattering

    Full text link
    Proton elastic scattering and inelastic scattering to the first excited state of 6He have been measured over a wide angular range using a 40.9A MeV 6He beam. The data have been analyzed with a fully microscopic model of proton-nucleus scattering using 6He wave functions generated from large space shell model calculations. The inelastic scattering data show a remarkable sensitivity to the halo structure of 6He.Comment: 9 pages, 3 figures. RevTeX. Replaced figure 3 with updated figur
    corecore