161 research outputs found

    Design and investigation of surface addressable Photonic Crystal cavity confined band edge modes for quantum photonic devices

    Full text link
    We propose to use a localized G-point slow Bloch mode in a 2D-Photonic Crystal (PC) membrane to realize an efficient surface emitting source. This device can be used as a quantum photonic device, e.g. a single photon source. The physical mechanisms to increase the Q/V factor and to improve the directivity of the PC microcavity rely on a fine tuning of the geometry in the three directions of space. The PC lateral mirrors are first engineered in order to optimize photons confinement. Then, the effect of a Bragg mirror below the 2DPC membrane is investigated in terms of out-of-plane leakages and far field emission pattern. This photonic heterostructure allows for a strong lateral confinement of photons, with a modal volume of a few (λ/n)3 and a Purcell factor up to 80, as calculated by two different numerical methods. We finally discuss the efficiency of the single photon source for different collection set-up. © 2011 Optical Society of America

    Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis

    Get PDF
    RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes

    Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals

    Full text link
    A 2-D photonic crystal was integrated experimentally into a thin-film crystalline-silicon solar cell of 1-{\mu}m thickness, after numerical optimization maximizing light absorption in the active material. The photonic crystal boosted the short-circuit current of the cell, but it also damaged its open-circuit voltage and fill factor, which led to an overall decrease in performances. Comparisons between modeled and actual optical behaviors of the cell, and between ideal and actual morphologies, show the global robustness of the nanostructure to experimental deviations, but its particular sensitivity to the conformality of the top coatings and the spread in pattern dimensions, which should not be neglected in the optical model. As for the electrical behavior, the measured internal quantum efficiency shows the strong parasitic absorptions from the transparent conductive oxide and from the back-reflector, as well as the negative impact of the nanopattern on surface passivation. Our exemplifying case, thus, illustrates and experimentally confirms two recommendations for future integration of surface nanostructures for light trapping purposes: 1) the necessity to optimize absorption not for the total stack but for the single active material, and 2) the necessity to avoid damage to the active material by pattern etching.Comment: Authors' postprint version - Editor's pdf published online on Nov.

    Absorbing photonic crystals for thin film photovoltaics

    Full text link
    The absorption of thin hydrogenated amorphous silicon layers can be efficiently enhanced through a controlled periodic patterning. Light is trapped through coupling with photonic Bloch modes of the periodic structures, which act as an absorbing planar photonic crystal. We theoretically demonstrate this absorption enhancement through one or two dimensional patterning, and show the experimental feasibility through large area holographic patterning. Numerical simulations show over 50% absorption enhancement over the part of the solar spectrum comprised between 380 and 750nm. It is experimentally confirmed by optical measurements performed on planar photonic crystals fabricated by laser holography and reactive ion etching.Comment: 6 pages. SPIE Photonics Europe pape

    (16) Psyche: A mesosiderite-like asteroid?

    Full text link
    Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however challenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyche's three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. We derived a bulk density of 3.99\,±\pm\,0.26\,g⋅\cdotcm−3^{-3} for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites (∌\sim7.8\,g⋅\cdotcm−3^{-3}), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density ∌\sim4.25\,⋅\cdotcm−3^{-3}). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460\,±\pm\,200}\,m at 150\,km from Psyche (0.2\%\,×\times\,RHill_{Hill}, the Hill radius) and 800\,±\pm\,200\,m at 2,000\,km (3\%\,×\times\,RHillR_{Hill}). Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites.Comment: 16 page

    Collapse of the N=28 shell closure in 42^{42}Si

    Get PDF
    The energies of the excited states in very neutron-rich 42^{42}Si and 41,43^{41,43}P have been measured using in-beam Îł\gamma-ray spectroscopy from the fragmentation of secondary beams of 42,44^{42,44}S at 39 A.MeV. The low 2+^+ energy of 42^{42}Si, 770(19) keV, together with the level schemes of 41,43^{41,43}P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that 42^{42}Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let

    Nucleic Acids Res

    Get PDF
    In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 ÎČ-strands forming a ÎČ-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the ÎČ-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∌120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
    • 

    corecore