187 research outputs found

    Inverse modelling in estimating soil hydraulic functions: a Genetic Algorithm approach

    Get PDF
    The practical application of simulation models in the field is sometimes hindered by the difficulty of deriving the soil hydraulic properties of the study area. The procedure so-called inverse modelling has been investigated in many studies to address the problem where most of the studies were limited to hypothetical soil profile and soil core samples in the laboratory. Often, the numerical approach called forward-backward simulation is employed to generate synthetic data then added with random errors to mimic the real-world condition. Inverse modelling is used to backtrack the expected values of the parameters. This study explored the potential of a Genetic Algorithm (GA) to estimate inversely the soil hydraulic functions in the unsaturated zone. Lysimeter data from a wheat experiment in India were used in the analysis. Two cases were considered: (1) a numerical case where the forward-backward approach was employed and (2) the experimental case where the real data from the lysimeter experiment were used. Concurrently, the use of soil water, evapotranspiration (ET) and the combination of both were investigated as criteria in the inverse modelling. Results showed that using soil water as a criterion provides more accurate parameter estimates than using ET. However, from a practical point of view, ET is more attractive as it can be obtained with reasonable accuracy on a regional scale from remote sensing observations. The experimental study proved that the forward-backward approach does not take into account the effects of model errors. The formulation of the problem is found to be critical for a successful parameter estimation. The sensitivity of parameters to the objective function and their zone of influence in the soil column are major determinants in the solution. Generally, their effects sometimes lead to non-uniqueness in the solution but to some extent are partly handled by GA. Overall, it was concluded that the GA approach is promising to the inverse problem in the unsaturated zone.</p> <p style='line-height: 20px;'><b>Keywords. </b>Genetic Algorithm, inverse modelling, Mualem-Van Genuchten parameters, unsaturated zone, evapotranspiration, soil wate

    Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    Get PDF
    International audienceNumerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario model errors will level out. For a polder in The Netherlands an innovative procedure has been introduced, referred to as the Model-Scenario-Ratio (MSR), to express model inaccuracy on climate change impact assessment studies based on simulation models comparing a reference situation to a climate change situation. The SWAP (Soil Water Atmosphere Plant) model was used for the case study and the reference situation was compared to two climate change scenarios. MSR values close to 1, indicating that impact assessment is mainly a function of the scenario itself rather than of the quality of the model, were found for most indicators evaluated. A climate change scenario with enhanced drought conditions and indicators based on threshold values showed lower MSR values, indicating that model accuracy is an important component of the climate change impact assessment. It was concluded that the MSR approach can be applied easily and will lead to more robust impact assessment analyses

    Climate change impact assessment as function of model inaccuracy

    No full text
    International audienceNumerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario model errors will level out. For a polder in The Netherlands an innovative procedure has been introduced, referred to as the Model-Scenario-Ratio (MSR), to express model inaccuracy on climate change impact assessment. MSR values close to 1, indicating that impact assessment is mainly a function of the scenario itself rather than of the quality of the model, were found for most indicators evaluated. More extreme climate change scenarios and indicators based on threshold values showed lower MSR values, indicating that model accuracy is an important component of the climate change impact assessment. It was concluded that the MSR approach can be applied easily and will lead to more robust impact assessment analyses

    Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran

    Get PDF
    Irrigation systemsCropping systemsIrrigated farmingRiver basinsTopographyGeomorphologyClimateHydrologyWater qualityGroundwaterSoil salinitySustainable agricultureIranEsfahan ProvinceZayandeh Rud BasinChadegan Reservoir

    World Water Assessment Program case study, Ruhuna basins, Sri Lanka

    Get PDF
    River basins / Topography / Soils / Ecology / Climate / Rain / Evapotranspiration / Population / Land use / Surface water / Groundwater / Aquifers / Water quality / Water resources development / Fisheries / Wells / Pumps / Waterborne diseases / Ecosystems / Water use / Hydroelectric schemes / Tanks / Political aspects / Institutions / Legislation / Public investment / Domestic water / Water supply / Financing / Social participation / Risks / Drought / Irrigation water / Sri Lanka / Ruhuna river basins

    Predicting Impacts of Climate Change on Fasciola hepatica Risk

    Get PDF
    Fasciola hepatica (liver fluke) is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits

    Aandacht voor veiligheid

    Get PDF
    De komende decennia worden er tussen de 500.000 en 1.500.000 woningen gebouwd waarvan een groot deel in laag Nederland. Deze studie laat zien dat door deze woningen overstromingsbestendig te bouwen schadereductie mogelijk is. Het schaderisico wordt dan nog eens een factor 2 minder als naast een Business as Usual variant nieuwbouwwoningen worden opgehoogd tot +5 m NAP. De kosten van opgehoogde nieuwbouwhuizen zijn hoger en variëren tussen de 0,4 en 1.7 miljard euro/jaar, hetgeen overeenkomt met 0,1-0,5% van het BNP. Dijkversterking levert de hoogste reductie op in het schaderisico bij de gehanteerde scenario’s. Gevolgbeperkende maatregelen in de ruimtelijk ordening als additionele oplossingsrichting zijn echter goed mogelijk als er ook een economische perspectief is bijvoorbeeld door middel van multifunctioneel ruimtegebruik

    Soil measurements during HAPEX-Sahel intensive observation period

    Get PDF
    This article describes measurements made at each site and for each vegetation cover as part of the soils program for the HAPEX-Sahel regional scale experiment. The measurements were based on an initial sampling scheme and included profile soil water content, surface soil water content, soil water potential, infiltration rates, additional measurements on core samples, and grain size analysis. The measurements were used to categorize the state of the surface and profile soil water regimes during the experiment and to derive functional relationships for the soil water characteristic curve, unsaturated hydraulic conductivity function, and infiltration function. Sample results for different supersites and different vegetation covers are presented showing soil water profiles and total soil water storage on days corresponding to the experimental ‘Golden Days’. Sample results are also presented for spatial and temporal distribution of surface moisture content and infiltration tests. The results demonstrate that the major experimental objective of monitoring the supersites during the most rapid vegetative growth stage with the largest change of the surface energy balance following the rainy season was very nearly achieved. Separation of the effects of probable root activity and drainage of the soil profile is possible. The potential for localized advection between the bare soil and vegetation strips of the tiger bush sites is demonstrate

    On Spatially Distributed Hydrological Ecosystem Services: Bridging the Quantitative Information Gap using Remote Sensing and Hydrological Models

    Get PDF
    One of the ways in which the CGIAR Research Program on Water, Land and Ecosystems (WLE) addresses the challenge of achieving sustainable growth is by improving our understanding of tradeoffs and synergies related to water, food, environment and energy. Essential to the success of these efforts is the availability of quantitative data on these tradeoffs and synergies, and how they vary across space and time. Specifically for the countries sharing the Mekong River, WLE Greater Mekong seeks to drive and inform research and dialogue around the rivers of the region. Hydrological EcoSystem Services (HESS) are heavily affected by intensive development across the region, such as the construction of hydropower dams and land use changes - in particular deforestation, urbanization and agricultural intensification. The full extent of such changes in the agro-ecological system is often unknown, and it is a challenge to account for tradeoffs in HESS in policy processes. As in many other areas of the world, improving governance and management of water resources and associated land and ecosystems in the Greater Mekong region is not only a matter of generating more data. Sharing of knowledge and practices is a key focus of WLE Greater Mekong, which we strive to promote by enhancing the accessibility of valuable information to a wide diversity of regional stakeholders, and promoting dialogue by facilitating the creation of communities of practice. This white paper demonstrates state-of-the-art methods for assessing different HESS and their tradeoffs under different development scenarios. It explores opportunities for spatial monitoring of HESS and predicting changes under different future scenarios, information that is essential for achieving a balanced and healthy agro-ecological system. By relying on tools in the public domain and leveraging the resulting HESS data through online information platforms, this white paper is an excellent example of current efforts supported by WLE Greater Mekong to stimulate uptake of ecosystem services assessments in decision-making processes
    • …
    corecore