64 research outputs found

    Revue sur l’état actuel des connaissances des procĂ©dĂ©s utilisĂ©s pour l’élimination des cyanobactĂ©ries et cyanotoxines lors de la potabilisation des eaux

    Get PDF
    Les toxines cyanobactĂ©riennes sont des contaminants importants des Ă©cosystĂšmes aquatiques et constituent un risque pour la santĂ© humaine. Les cyanobactĂ©ries peuvent libĂ©rer des toxines dans l’eau, particuliĂšrement lors de la lyse des cellules qui se produit souvent au moment de leur passage Ă  travers la filiĂšre conventionnelle de potabilisation des eaux. Dans cet article de revue de la littĂ©rature, les normes sur la qualitĂ© de l’eau concernant les toxines ainsi que les principales mĂ©thodes de dĂ©tection des toxines sont d’abord prĂ©sentĂ©es. Les mĂ©thodes d’élimination des cyanobactĂ©ries et des cyanotoxines sont ensuite dĂ©crites et leur performance discutĂ©e. Les procĂ©dĂ©s conventionnels prĂ©sentĂ©s sont la coagulation/floculation, la clarification, la filtration sur sable, l’utilisation du charbon actif ainsi que l’oxydation chimique par chloration ou par le permanganate de potassium. Les mĂ©thodes alternatives prĂ©sentement en dĂ©veloppement pour optimiser les systĂšmes actuels de potabilisation des eaux ou remplacer les technologies conventionnelles trop peu efficaces pour l’élimination des polluants Ă©mergents (par ex., les procĂ©dĂ©s d’oxydation avancĂ©e et la filtration membranaire) sont Ă©galement prĂ©sentĂ©es. Des procĂ©dĂ©s conventionnels tels que la chloration peuvent s’avĂ©rer inadĂ©quats, notamment par leur manque de fiabilitĂ© pour l’oxydation des cyanotoxines et par le risque encouru suite Ă  la formation de sous-produits toxiques (par ex., les organochlorĂ©s). Des mĂ©thodes alternatives telles que la combinaison d’ozone et de peroxyde d’hydrogĂšne permettent une oxydation fiable des cyanotoxines en assurant un effet rĂ©manent Ă  la sortie du contacteur. Ce type de traitement peut ĂȘtre facilement mis en oeuvre dans les usines de potabilisation des eaux possĂ©dant dĂ©jĂ  une unitĂ© d’ozonation. L’utilisation du charbon actif, notamment sous forme de poudre, peut ĂȘtre efficace lors de contaminations ponctuelles par les fleurs d’eau de cyanobactĂ©ries. Ce document fait ainsi une synthĂšse de ces procĂ©dĂ©s chimiques, physiques ou physico-chimiques contribuant Ă  l’élimination des cyanotoxines et des cyanobactĂ©ries lors de la potabilisation des eaux.Cyanobacterial toxins are important contaminants of aquatic ecosystems and present a risk for human health. Cyanobacteria can release toxins in water, particularly following cell lysis, which often happens during their passage through a conventional water treatment plant. In this literature review, water quality guidelines for the elimination of cyanotoxins and major detection methods of cyanotoxins are briefly presented. The processes used for cyanobacteria and cyanotoxin removal from drinking water are then reviewed and their performance discussed. The conventional methods presented are: coagulation/flocculation, clarification, sand filtration, activated carbon and chemical oxidation with chlorination or potassium permanganate. Alternative methods that are presently developed to enhance existing treatment plants or to replace conventional technologies that are less effective in removing emergent pollutants (e.g., advanced oxidation processes and membrane filtration) are also presented. Conventional methods such as chlorination can be inappropriate, notably because of their inability to fully oxidize cyanotoxins and the associated risk of formation of toxic by-products (e.g., organochlorinated compounds). Alternative methods such as the combination of ozone and hydrogen peroxide are more reliable to eliminate cyanotoxins, with a residual effect downstream from the treatment contactor. In addition, this type of treatment can be easily implemented in water treatment plants that are already using ozonation. The use of activated carbon, notably in the form of powder, can be efficient in the case of point contamination by cyanobacterial blooms. This document aims to synthesize these chemical, physical and physico-chemical methods to eliminate cyanotoxins and cyanobacteria during the treatment of drinking water

    ProcĂ©dĂ©s d’oxydation avancĂ©e dans le traitement des eaux et des effluents industriels: Application Ă  la dĂ©gradation des polluants rĂ©fractaires

    Get PDF
    Cette synthĂšse traite des procĂ©dĂ©s d’oxydation avancĂ©e (POA) pour le traitement des eaux et des effluents industriels. Ces procĂ©dĂ©s mettent pour la plupart en combinaison deux ou trois rĂ©actifs (oxydants) afin de produire des radicaux hydroxyles. Les radicaux libres sont des espĂšces hautement actives capables de rĂ©agir rapidement et de maniĂšre non sĂ©lective sur la plupart des composĂ©s organiques, rĂ©putĂ©s difficilement oxydables par voie biologique ou par des traitements chimiques conventionnels. Les POA peuvent ĂȘtre subdivisĂ©s en quatre groupes : les procĂ©dĂ©s d’oxydation chimique en phase homogĂšne (H2O2/Fe2+ et H2O2/O3), les procĂ©dĂ©s photocatalytiques en phase homogĂšne et/ou hĂ©tĂ©rogĂšne (H2O2/UV, O3/UV et Fe2+/H2O2/UV; TiO2/UV), les procĂ©dĂ©s d’oxydation sonochimique et les procĂ©dĂ©s d’oxydation Ă©lectrochimique. Le couplage H2O2/Fe2+ reprĂ©sente le systĂšme d’oxydation avancĂ©e le plus connu et le moins complexe, lequel est souvent employĂ© dans le traitement des effluents industriels. Cependant, dans le domaine de la potabilisation des eaux, le systĂšme le plus utilisĂ© et le plus Ă©prouvĂ© est le couplage H2O2/O3 couramment employĂ© pour l’élimination des composĂ©s phytosanitaires (pesticides). Les procĂ©dĂ©s d’oxydation Ă©lectrochimiques, photocatalytiques et sonochimiques sont des technologies qui nĂ©cessitent en gĂ©nĂ©ral moins de rĂ©actif et sont faciles d’automatisation par comparaison aux autres POA. Ces procĂ©dĂ©s sont prĂ©sentement en pleine expansion dans le domaine des technologies environnementales, ceci afin d’amĂ©liorer les systĂšmes existants de traitement des eaux usĂ©es municipales et industrielles, ou Ă  remplacer les technologies conventionnelles peu efficaces pour l’enlĂšvement de contaminants organiques rĂ©fractaires, inorganiques et microbiens. De nombreuses Ă©tudes rĂ©alisĂ©es Ă  l’échelle laboratoire ont clairement prouvĂ© l’efficacitĂ© des POA pour le traitement de divers effluents. Cependant, le dĂ©veloppement de ces procĂ©dĂ©s dans les filiĂšres de traitement des eaux reste encore limitĂ© en raison des coĂ»ts d’investissement et des coĂ»ts opĂ©ratoires associĂ©s. Des solutions et stratĂ©gies sont proposĂ©es dans ce document, telles que le dĂ©veloppement de procĂ©dĂ©s hybrides et leur couplage avec des traitements biologiques conventionnels, et ce, afin de pallier certaines contraintes spĂ©cifiques des POA et faciliter ainsi leur insertion dans les filiĂšres de traitement des eaux et des effluents industriels. Ce document a pour objectif de faire une synthĂšse des diffĂ©rents POA, d’en expliquer leur principe de fonctionnement, de dĂ©terminer les diffĂ©rents paramĂštres les gouvernant, ainsi que leurs applications dans le traitement des eaux et des effluents.This review deals with advanced oxidation processes (AOP) for water and wastewater treatment. Most AOPs combine two or three chemical oxidants in order to produce hydroxyl radicals. These free radicals are species capable of oxidizing numerous complex organic, non-chemically oxidizable or difficulty oxidizable compounds. They efficiently react with carbon-carbon double bonds and attack the aromatic nucleus, which are prevalent features of refractory organic compounds. The AOPs can be divided into four groups: homogenous chemical oxidation processes (H2O2/Fe2+ and H2O2/O3), homogenous/heterogeneous photocatalytic processes (H2O2/UV, O3/UV and Fe2+/H2O2/UV; TiO2/UV), sonification oxidation processes (ultrasound oxidation) and electrochemical oxidation processes. The H2O2/Fe2+ system represents the most common and simplest AOP, which is often employed for the treatment of industrial effluents. However for drinking water treatment, the H2O2/O3 system is commonly used for pesticide removal. Electrochemical, photo-catalytic and sonification oxidation processes require fewer chemicals and are more easily automated than other AOPs. These technologies are effective in improving the treatment of industrial wastes, wastewater and drinking water, for example after their integration into a treatment plant or after their replacement of conventional processes that are found to less effectively eliminate specific organic and inorganic pollutants. The goal of this paper is to review published literature on the use of AOPs for water and wastewater treatment and the removal of refractory pollutants. Specifically, the objectives are: (i) to understand the theory and mechanisms of pollutant removal in AOPs, (ii) to provide a database for AOP applications, and (iii) to suggest new research directions for the development of AOPs

    Photosonochemical degradation of butyl-paraben: Optimization, toxicity and kinetic studies

    Get PDF
    The objective of the present work is to evaluate the potential of a photosonolysis process for the degradation of butyl-paraben (BPB). After 120 min of treatment time, high removal of BPB was achieved by the photosonolysis (US/UV) process (88.0 ± 0.65%) compared to the photochemical (UV) and the conventional ultrasonication (US) processes. Several factors such as calorimetric power, treatment time, pH and initial concentration of BPB were investigated. Using a 24 factorial matrix, the treatment time and the calorimetric power are the main parameters influencing the degradation rate of BPB. Subsequently, a central composite design methodology has been investigated to determine the optimal experimental parameters for BPB degradation. The US/UV process applied under optimal operating conditions (at a calorimetric power of 40 W during 120 min and under pH 7) is able to oxidize around 99.2 ± 1.4% of BPB and to record 43.3% of mineralization. During the US/UV process, BPB was mainly transformed into 1 hydroxy BPB, dihydroxy BPB, hydroquinone and 4-hydroxybenzoic acid. Microtox biotests (Vibrio fisheri) showed that the treated effluent was not toxic. The pseudo-first order kinetic model (k = 0.0367 min− 1) described very well the oxidation of BPB

    Simultaneous phosphates and nitrates removal from waste-waters by electrochemical process: Techno-economical assessment through response surface methodology

    Get PDF
    In this study, a new multiobjective optimization of the simultaneous removal of phosphates and nitrates by electrocoagulation was studied using the Box-Behnken design. Ten aluminium electrodes, connected in a monopolar configuration in a batch reactor, were immersed in synthetic wastewater and then in real wastewater. The optimal conditions and the effects of parameters (current intensity, electrolysis time and initial pH) on phosphate and nitrate removal, the formation of by-products, and the operating cost were assessed in the case of synthetic wastewater. This optimization allowed to eliminate 89.21 % of phos­phates, 69.06 % of nitrates with an operating cost of 3.44 USD m-3 against 13.67 mg L-1 of ammonium generated. Optimal conditions applied to real domestic wastewater made it possible to remove 93 % of phosphates and 90.3 % of nitrates with an ammonium residual of 30.9 mg L-1. The addition of sodium chloride reduced the residual ammonium content to 2.95 mg L-1. Further, XRD analysis of the sludge showed poor crystal structure and the FTIR spectrum suggested that the phosphate is removed by adsorption and co-precipitation

    Removal of Methylene Blue in aqueous solutions by Electrocoagulation process: Adsorption, Kinetics, studies

    Get PDF
    The purpose of this study is to understand the mechanism driving the removal of methylene blue through electrocoagulation process. Experiments were carried out using iron as anode and cathode in a batch electrochemical cell operated in a monopolar configuration. The effects of operating parameters (initial pH, current density, initial dye concentration and energy consumption) on the removal of methylene blue from solution were investigated. The results showed that the optimum removal efficiency of 93.2% was achieved for a current density of 9.66 mA/cm2, optimal pH of 8±0.01 with a specific energy consumption of 7.451 kWh/m3. Afterwards, first and second-order rate equations were successively applied to study adsorption kinetics models. On top of usual correlation coefficients (r2), statistical test Chi-square (χ2) were applied to evaluate goodness of fit and consequently find out the best kinetic model. Results showed that MB adsorption process onto iron hydroxides formed in aqueous solution during electrocoagulation treatment followed a second-order kinetic

    Enhanced Decomposition of H2O2 Using Metallic Silver Nanoparticles under UV/Visible Light for the Removal of p-Nitrophenol from Water

    Full text link
    peer reviewedThree Ag nanoparticle (NP) colloids are produced from borohydride reduction of silver nitrate in water by varying the amount of sodium citrate. These nanoparticles are used as photocatalysts with H2O2 to degrade a p-nitrophenol (PNP) solution. X-ray diffraction pa erns have shown the production of metallic silver nanoparticles, whatever the concentration of citrate. The transmission electron microscope images of these NPs highlighted the evolution from spherical NPs to hexagonal/rod-like NPs with broader distribution when the citrate amount increases. Aggregate size in solution has also shown the same tendency. Indeed, the citrate, which is both a capping and a reducing agent, modifies the resulting shape and size of the Ag NPs. When its concentration is low, the pH is higher, and it stabilizes the formation of uniform spherical Ag NPs. However, when its concentration increases, the pH decreases, and the Ag reduction is less controlled, leading to broader distribution and bigger rod-like Ag NPs. This results in the production of three different samples: one with more uniform spherical 20 nm Ag NPs, one intermediate with 30 nm Ag NPs with spherical and rod-like NPs, and one with 50 nm rod-like Ag NPs with broad distribution. These three Ag NPs mixed with H2O2 in water enhanced the degradation of PNP under UV/visible irradiation. Indeed, metallic Ag NPs produce localized surface plasmon resonance under illumination, which photogenerates electrons and holes able to accelerate the production of hydroxyl radicals when in contact with H2O2. The intermediate morphology sample presents the best activity, doubling the PNP degradation compared to the irradiated experiment with H2O2 alone. This be er result can be a ributed to the small size of the NPs (30 nm) but also to the presence of more defects in this intermediate structure that allows a longer lifetime of the photogenerated species. Recycling experiments on the best photocatalyst sample showed a constant activity of up to 40 h of illumination for a very low concentration of photocatalyst compared to the literature

    Application des procĂ©dĂ©s d’oxydation avancĂ©e pour le traitement des eaux contaminĂ©es par les pesticides – revue de littĂ©rature

    No full text
    Les pesticides sont des substances chimiques et naturelles destinĂ©es Ă  dĂ©truire, combattre ou repousser les organismes indĂ©sirables ou nuisibles qui causent des dommages aux cultures et produits agricoles. Leur utilisation permet aussi d’entretenir les espaces publics et les voies ferrĂ©es. Ces utilisations multiples des pesticides expliquent leur prĂ©sence dans divers compartiments environnementaux comme l’eau, les sols et l’air. Cette prĂ©sence dans l’environnement a des consĂ©quences nĂ©fastes sur les ĂȘtres vivants, en particulier chez l’Homme oĂč l’exposition aux pesticides peut causer des maladies neurodĂ©gĂ©nĂ©ratives, congĂ©nitales et divers types de cancer. Il est donc nĂ©cessaire de contrĂŽler les sources d’émission, rĂ©duire leurs transferts dans l’environnement et traiter les milieux d’exposition contaminĂ©s Ă  l’aide de procĂ©dĂ©s d’épuration efficaces comme les procĂ©dĂ©s d’oxydation avancĂ©e (POA). Dans cette revue de synthĂšse bibliographique, l’accent est mis sur les diffĂ©rents paramĂštres opĂ©ratoires qui influencent l’efficacitĂ© des procĂ©dĂ©s Ă©lectrochimiques, photochimiques et Ă©lectro-photochimiques dans le traitement des eaux contaminĂ©es par les pesticides. De maniĂšre globale, l’efficacitĂ© des POA est influencĂ©e par la nature de l’effluent Ă  traiter (synthĂ©tique ou rĂ©el), le pH, et le temps de traitement. Les procĂ©dĂ©s Ă©lectrochimiques sont influencĂ©s par la nature des Ă©lectrodes et la densitĂ© du courant appliquĂ©e. Les procĂ©dĂ©s photochimiques comme la photocatalyse sont influencĂ©s par la nature et la concentration du photocatalyseur et par la longueur d’onde de la source lumineuse. Les procĂ©dĂ©s Ă©lectro-photochimiques comme l’électro-photocatalyse sont influencĂ©s par la nature de la photo-anode. Cette revue de littĂ©rature a permis de montrer l’efficacitĂ© de POA pour la dĂ©gradation totale et la minĂ©ralisation partielle de l’atrazine en concentration initiale identique (C0 = 0,1 mM).Pesticides are chemical substances intended to eliminate undesirable and harmful organisms that cause damage to crops and agricultural products. They also help maintain roads and public areas. These uses and emission sources, associated with transfer pathways such as erosion and runoff, explain the presence of pesticides in various environmental compartments. The presence of pesticides in the environment is a source of toxicity to many organisms, particularly to humans who may undergo neurodegenerative and congenital diseases and various forms of cancer. Therefore, it is necessary to control the emission sources, to reduce the transfer of pesticides into the environment and to treat contaminated media using efficient processes such as advanced oxidation processes (AOPs). This review focuses on the various operating parameters that influence the effectiveness of electrochemical, photochemical and electro-photochemical processes during the treatment of water contaminated by pesticides. Generally, the effectiveness of AOPs is influenced by the nature of influent (synthetic or real), the pH and the treatment time. Electrochemical processes are influenced by the nature of the electrodes and current density applied. Photochemical processes such as photocatalytic processes are influenced by the light source, the nature and concentration of the photocatalyst. The electro-photochemical processes such as electro-photocatalysis are influenced by the nature of the photo-anode. This review has shown the effectiveness of AOPs for the total degradation and the partial mineralization of atrazine when considering an identical initial concentration (C0 = 0.1 mM)
    • 

    corecore