180 research outputs found

    Polaronic distortion and vacancy-induced magnetism in MgO

    Full text link
    The electronic structure of the neutral and singly charged Mg vacancy in MgO is investigated using density functional theory. For both defects, semilocal exchange correlation functionals such as the local spin density approximation incorrectly predict a delocalized degenerate ground state. In contrast functionals that take strong correlation effects into account predict a localized solution, in agreement with spin resonance experiments. Our results, obtained with the HSE hybrid, atomic self-interaction corrected and LDA+U functionals, provide a number of constraints to the possibility of ferromagnetism in hole doped MgO

    Electric field control of valence tautomeric interconversion in Cobalt dioxolene

    Full text link
    We demonstrate that the critical temperature for valence tautomeric interconversion in Cobalt dioxolene complexes can be significantly changed when a static electric field is applied to the molecule. This is achieved by effectively manipulating the redox potential of the metallic acceptor forming the molecule. Importantly our accurate density functional theory calculations demonstrate that already a field of 0.1 V/nm, achievable in Stark spectroscopy experiments, can produce a change in the critical temperature for the interconversion of 20 K. Our results indicate a new way for switching on and off the magnetism in a magnetic molecule. This offers the unique chance of controlling magnetism at the atomic scale by electrical means

    Transmission through correlated CunCoCun heterostructures

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.We propose a method to compute the transmission through correlated heterostructures by combining density functional and many-body dynamical mean field theories. The heart of this combination consists in porting the many-body self-energy from an all electron basis into a pseudopotential localized atomic basis set. Using this combination we study the effects of local electronic interactions and finite temperatures on the transmission across the Cu4CoCu4 metallic heterostructure. It is shown that as the electronic correlations are taken into account via a local but dynamic self-energy, the total transmission at the Fermi level gets reduced (predominantly in the minority-spin channel), whereby the spin polarization of the transmission increases. The latter is due to a more significant d-electron contribution, as compared to the noncorrelated case in which the transport is dominated by s and p electrons.Financial support offered by the Augsburg Center for Innovative Technologies and by the Deutsche Forschungsgemeinschaft (through TRR 80) is gratefully acknowledged. A.D. and I.R. acknowledge financial support from the European Union through the EU FP7 program through project 618082 ACMOL. M.R. also acknowledges support by the Ministry of Education, Science, and Technological Development of the Republic of Serbia under Projects No. ON171017 and No. III45018. A.O. would like to acknowledge financial support from the Axel Hultgren foundation and the Swedish steel producer’s association (Jernkontoret). L.V. acknowledges support from the Swedish Research Council.Peer Reviewe

    Spin-orbit induced equilibrium spin currents in materials

    Get PDF
    The existence of pure spin currents in absence of any driving external field is commonly considered an exotic phenomenon appearing only in quantum materials, such as topological insulators. We demonstrate instead that equilibrium spin currents are a rather general property of materials with non-negligible spin-orbit coupling (SOC). Equilibrium spin currents can be present at the surfaces of a slab. Yet, we also propose the existence of global equilibrium spin currents, which are net bulk spin currents along specific crystallographic directions of solid-state materials. Equilibrium spin currents are allowed by symmetry in a very broad class of systems having gyrotropic point groups. The physics behind equilibrium spin currents is uncovered by making an analogy between electronic systems with SOC and non-Abelian gauge theories. The electron spin can be seen as analogous to the color degree of freedom in SU(2) gauge theories and equilibrium spin currents can then be identified with diamagnetic color currents appearing as the response to a effective non-Abelian magnetic field generated by the SOC. Equilibrium spin currents are not associated with spin transport and accumulation, but they should nonetheless be carefully taken into account when computing transport spin currents. We provide quantitative estimates of equilibrium spin currents for a number of different systems, specifically the Au(111) and Ag(111) metallic surfaces presenting Rashba-type surface states, nitride semiconducting nanostructures, and bulk materials, such as the prototypical gyrotropic medium tellurium. In doing so, we also point out the limitations of model approaches showing that first-principles calculations are needed to obtain reliable predictions. We therefore use density functional theory computing the so-called bond currents, which represent a powerful tool to deeply understand the relation between equilibrium currents, electronic structure, and crystal point group

    Transmission through correlated Cun_nCoCun_n heterostructures

    Get PDF
    The effects of local electronic interactions and finite temperatures upon the transmission across the Cu4_4CoCu4_4 metallic heterostructure are studied in a combined density functional and dynamical mean field theory. It is shown that, as the electronic correlations are taken into account via a local but dynamic self-energy, the total transmission at the Fermi level gets reduced (predominantly in the minority spin channel), whereby the spin polarization of the transmission increases. The latter is due to a more significant dd-electrons contribution, as compared to the non-correlated case in which the transport is dominated by ss and pp electrons.Comment: 29 pages, 7 figures, submited to PR

    The ground state of a spin-crossover molecule calculated by diffusion Monte Carlo

    Get PDF
    Spin crossover molecules have recently emerged as a family of compounds potentially useful for implementing molecular spintronics devices. The calculations of the electronic properties of such molecules is a formidable theoretical challenge as one has to describe the spin ground state of a transition metal as the legand field changes. The problem is dominated by the interplay between strong electron correlation at the transition metal site and charge delocalization over the ligands, and thus it fits into a class of problems where density functional theory may be inadequate. Furthermore, the crossover activity is extremely sensitive to environmental conditions, which are difficult to fully characterize. Here we discuss the phase transition of a prototypical spin crossover molecule as obtained with diffusion Monte Carlo simulations. We demonstrate that the ground state changes depending on whether the molecule is in the gas or in the solid phase. As our calculation provides a solid benchmark for the theory we then assess the performances of density functional theory. We find that the low spin state is always over-stabilized, not only by the (semi-)local functionals, but even by the most commonly used hybrids (such as B3LYP and PBE0). We then propose that reliable results can be obtained by using hybrid functionals containing about 50% of exact-exchange
    • …
    corecore