11 research outputs found

    SPHERES, J\"ulich's High-Flux Neutron Backscattering Spectrometer at FRM II

    Get PDF
    SPHERES (SPectrometer with High Energy RESolution) is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Juelich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 micro-eV, a dynamic range of +-31 micro-eV, and a signal-to-noise ratio of up to 1750:1.Comment: 12 pages, 7 figures, 2 tables. Supplemental material consists of 3 pages, 2 figures, 2 table

    The high-intensity option of the SANS diffractometer KWS-2 at JCNS – characterization and performance of the new multi-megahertz detection system

    No full text
    A new detection system based on an array of 3He tubes and innovative fast detection electronics has been installed on the high-intensity small-angle neutron scattering (SANS) diffractometer KWS-2 operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum in Garching, Germany. The new detection system is composed of 18 eight-pack modules of 3He tubes that work independently of one another (each unit has its own processor and electronics). To improve the read-out characteristics and reduce the noise, the detection electronics are mounted in a closed case on the rear of the 3He tubes' frame. The tubes' efficiency is about 85% (for λ = 5 Å) and the resolution slightly better than 8 mm. The new detection system is characterized by a dead-time constant of 3.3 µs per tube and an overall count rate as high as 6 MHz at 10% dead-time loss. Compared with the old detector this is an improvement by a factor of 60. The much higher count rate will shorten the measurement times and thus increase the number of experiments possible in a given time period by the optimal use of the high flux of up to 2 × 108 n cm−2 s−1 at the sample position. Combined with the event-mode operation capability, this will enable new scientific opportunities in the field of structural investigations of small soft-matter and biological systems. The implementation of the detector in the high-intensity concept on KWS-2, its characterization and its performance based on test experiments are reported in this paper

    Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

    Get PDF
    The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10(-4) and 0.5 Å(-1) by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved

    Tuning the instrument resolution using chopper and time of flight at the small-angle neutron scattering diffractometer KWS-2

    No full text
    Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution [Delta][lambda]/[lambda] within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes

    SPHERS, Jïlich's high-flux neutron backscattering spectrometer at FRM II

    No full text
    SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Jülich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 μeV, a dynamic range of ± 31 μeV, and a signal-to-noise ratio of up to 1750:1
    corecore