413 research outputs found
Backward-facing step measurements at low Reynolds number, Re(sub h)=5000
An experimental study of the flow over a backward-facing step at low Reynolds number was performed for the purpose of validating a direct numerical simulation (DNS) which was performed by the Stanford/NASA Center for Turbulence Research. Previous experimental data on back step flows were conducted at Reynolds numbers and/or expansion ratios which were significantly different from that of the DNS. The geometry of the experiment and the simulation were duplicated precisely, in an effort to perform a rigorous validation of the DNS. The Reynolds number used in the DNS was Re(sub h)=5100 based on step height, h. This was the maximum possible Reynolds number that could be economically simulated. The boundary layer thickness, d, was approximately 1.0 h in the simulation and the expansion ratio was 1.2. The Reynolds number based on the momentum thickness, Re(sub theta), upstream of the step was 610. All of these parameters were matched experimentally. Experimental results are presented in the form of tables, graphs and a floppy disk (for easy access to the data). An LDV instrument was used to measure mean velocity components and three Reynolds stresses components. In addition, surface pressure and skin friction coefficients were measured. LDV measurements were acquired in a measuring domain which included the recirculating flow region
Catalysis and Oxidation of Copper Calorimeters: Are We Over-Testing Material Samples?
No abstract availabl
Uncertainty Analysis of Coaxial Thermocouple Calorimeters Used in Arc Jets
Recent introduction of Coaxial Thermocouple type calorimeters into the NASA Ames arc jet facilities has inspired an analysis of 2D conduction effects internal to this type of calorimeter. The 1D finite slab inverse analysis (which is typically used to deduce the heat transfer to the calorimeter) relies on the assumption that lateral conduction (i.e., 2D effects) is negligible. Most calorimeter bodies have a spherical nose, which in itself is a violation of the 1D finite slab analysis assumption. Secondly most calorimeters experience a variation in heating across the face of the body which is also a violation of the 1D finite slab analysis assumption. It turns out that these two effects tend to cancel each other to some extent. This paper shows the extent to which error exists in the analysis of the Coaxial Thermocouple type calorimeters, and also offers analysis strategies for reducing the errors
Species Distribution Modeling for Arid Adapted Habitat Specialists in Zion National Park
The Arizona toad (Anaxyrus microscaphus) and Jones’ waxy dogbane (Cycladenia humilis var. jonesii) are habitat specialists with historical ranges in the desert southwest and specifically, Zion National Park (ZION). The machine learning method, MaxEnt, constructed species distribution models (SDMs) in ZION for the two study species at 30 m and 900 m spatial resolutions using climate, topographic, and remotely sensed data. Additionally, 900 m forecasting models were constructed to observe the shifts in suitable habitat for the years 2050 and 2070, based off two representative concentration pathway scenarios. Results indicate promising predictive power for both high resolution models (30m) for C. humilis var. jonesii and A. microscaphus with area under curve (AUC) test analysis of 0.715 and 0.810, respectively. Forecasting models displayed decreasing suitability for A. microscaphus with both climate scenarios applied to the model. However, C. humilis var. jonesii habitat increased with future scenarios applied to the MaxEnt models
SPECIES DISTRIBUTION MODELING FOR ARID ADAPTED HABITAT SPECIALISTS IN ZION NATIONAL PARK
The Arizona toad (Anaxyrus microscaphus) and Jones’ waxy dogbane (Cycladenia humilis var. jonesii) are habitat specialists with historical ranges in the desert southwest and specifically, Zion National Park (ZION). The machine learning method, MaxEnt, constructed species distribution models (SDMs) in ZION for the two study species at 30 m and 900 m spatial resolutions using climate, topographic, and remotely sensed data. Additionally, 900 m forecasting models were constructed to observe the shifts in suitable habitat for the years 2050 and 2070, based off two representative concentration pathway scenarios. Results indicate promising predictive power for both high resolution models (30m) for C. humilis var. jonesii and A. microscaphus with area under curve (AUC) test analysis of 0.715 and 0.810, respectively. Forecasting models displayed decreasing suitability for A. microscaphus with both climate scenarios applied to the model. However, C. humilis var. jonesii habitat increased with future scenarios applied to the MaxEnt models
Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet
High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small
DAF-16/FOXO Regulates Homeostasis of Essential Sleep-like Behavior during Larval Transitions in C. elegans
SummarySleep homeostasis, which refers to the maintenance of sleep amount or depth following sleep deprivation, indicates that sleep and sleep-like states serve fundamental functions that cannot be bypassed [1]. Homeostasis of sleep-like behavior is observed during C. elegans lethargus, a 2–3 hr behavioral quiescent period that occurs during larval state transitions [2]. Here, we report a role for DAF-16/FOXO, a transcription factor that is active under conditions of stress [3], in the response to deprivation of lethargus quiescence. Forced locomotion during lethargus results in nuclear translocation of DAF-16. The formation of dauer larvae, a developmental state promoted by daf-16, is increased in response to quiescence deprivation. daf-16 mutants show an impaired homeostatic response to deprivation of lethargus quiescence and are hypersensitive to the lethal effects of forced locomotion during lethargus. DAF-16 expression in muscle cells, but not in neurons, is sufficient to restore a homeostatic response to deprivation of quiescence, pointing to a role for muscle in sleep homeostasis. These findings are relevant to clinical observations of altered metabolic signaling in response to sleep deprivation and suggest that these signaling pathways may act in nonneuronal tissue to regulate sleep behaviors
Tracking Down a Critical Halo Mass for Killing Galaxies through the Growth of the Red-Sequence
Red-sequence galaxies record the history of terminated star-formation in the
Universe and can thus provide important clues to the mechanisms responsible for
this termination. We construct composite samples of published cluster and field
galaxy photometry in order to study the build-up of galaxies on the
red-sequence, as parameterised by the dwarf-to-giant ratio (DGR). We find that
the DGR in clusters is higher than that of the field at all redshifts, implying
that the faint end of the red-sequence was established first in clusters. We
find that the DGR evolves with redshift for both samples, consistent with the
``down-sizing'' picture of star formation. We examine the predictions of
semi-analytic models for the DGR and find that neither the magnitude of its
environmental dependence nor its evolution is correctly predicted in the
models. Red-sequence DGRs are consistently too high in the models, the most
likely explanation being that the strangulation mechanism used to remove hot
gas from satellite galaxies is too efficient. Finally we present a simple toy
model including a threshold mass, below which galaxies are not strangled, and
show that this can predict the observed evolution of the field DGR.Comment: MNRAS letters accepted. 5 pages, 1 figur
Evidence of Standing Waves in Arc Jet Nozzle Flow
Waves spawned by the nozzle in the NASA Ames 60 MW Interaction Heating Facility arc jet were experimentally observed in pressure surveys at the exit of the nozzle. The waves have been seen in past CFD simulations, but were away from the region where models were tested (for the existing nozzles). However, a recent test series with a new nozzle extension (229 mm exit diameter) revealed that these waves intersect the centerline of the jet in a region where it is desirable to put test articles, and that the waves may be contributing to non-uniform recession behavior seen in Teflon (trademark) sublimation test articles tested in this new nozzle. It is reasonable to assume the ablation recession of thermal protection models will also be nonuniform due to exposure to these waves. This work shows that ablation response is sensitive to the location of test samples in the free jet relative to the location of the wave interaction, and that the issues with these waves can be avoided by choosing an optimum position for a test article in the free jet. This work describes the experimental observations along with the CFD simulations that have identified the waves emanating from the nozzle, as well as the instrumentation used to detect them. The work describes a recommended solution, derived by CFD analysis, which if implemented, should significantly reduce these flow disturbance and pressure anomalies in future nozzles
The overdensities of galaxy environments as a function of luminosity and color
We study the mean environments of galaxies in the Sloan Digital Sky Survey as
a function of rest-frame luminosity and color. Overdensities in galaxy number
are estimated in and spheres
centered on galaxies taken from the SDSS spectroscopic sample. We
find that, at constant color, overdensity is independent of luminosity for
galaxies with the blue colors of spirals. This suggests that, at fixed
star-formation history, spiral-galaxy mass is a very weak function of
environment. Overdensity does depend on luminosity for galaxies with the red
colors of early types; both low-luminosity and high-luminosity red galaxies are
found to be in highly overdense regions.Comment: submitted to ApJ
- …