62 research outputs found

    Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues

    Get PDF
    Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network

    La trigonometría como herramienta para medir nuestro entorno

    Get PDF
    En esta experiencia de aula se presenta el trabajo de un grupo de estudiantes de grado décimo que realizaron una actividad en la clase de trigonometría en la que aplicaron conceptos trigonométricos para calcular las medidas de las instalaciones de la institución educativa a la cual pertenecen. El objetivo es mostrar un ejemplo de cómo se puede generar un ambiente de aprendizaje en el que los estudiantes puedan elaborar significados de objetos matemáticos como lo son las razones trigonométricas mediante una labor que permita la aplicación fundamental de la trigonometría realizando mediciones indirectas

    The effects of scaffold remnants in decellularized tissue-engineered cardiovascular constructs on the recruitment of blood cells

    Get PDF
    Decellularized tissue-engineered heart valves (DTEHVs) showed remarkable results in translational animal models, leading to recellularization within hours after implantation. This is crucial to enable tissue remodeling. To investigate if the presence of scaffold remnants before implantation is responsible for the fast recellularization of DTEHVs, an in vitro mesofluidic system was used. Human granulocyte and agranulocyte fractions were isolated, stained, brought back in suspension, and implemented in the system. Three different types of biomaterials were exposed to the circulating blood cells, consisting of decellularized tissue-engineered constructs (DTECs) with or without scaffold remnants or only bare scaffold. After 5 h of testing, the granulocyte fraction depleted faster from the circulation than the agranulocyte fraction. However, only granulocytes infiltrated into the DTEC with scaffold, migrating toward the scaffold remnants. The agranulocyte population, on the other hand, was only observed on the outer surface. Active cell infiltration was associated with increased levels of matrix metalloproteinase-1 secretion in the DTEC, including scaffold remnants. Proinflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor alpha (TNFα) were significantly upregulated in the DTEC without scaffold remnants. These results indicate that scaffold remnants can influence the immune response in DTEC, being responsible for rapid cell infiltration

    Porous scaffolds using dual electrospinning for in situ cardiovascular tissue engineering

    No full text
    \u3cp\u3eIn situ cardiovascular tissue engineering is emerging as a promising approach for replacing diseased or damaged components of the cardiovascular system by the use of biodegradable synthetic grafts. Functional porous scaffolds are implanted to create in vivo complex tissues that are functionally similar to their native counterparts. A biodegradable starter matrix permits cell infiltration and tissue formation at the site of implantation, while maintaining tissue mechanical and biological function. This chapter elaborates on the fabrication of porous scaffolds via the electrospinning technique, including advantages, as well as limitations of various approaches, like single-nozzle, dual-nozzle, and coaxial-nozzle electrospinning. 442The added value of dual-nozzle electrospinning technique is highlighted, where scaffold porosity is enhanced by selectively removing one of the polymers while the other polymer maintains mechanical stability. Further, optimization techniques for modifying the porosity of electrospun scaffolds are described along with their influence on the graft’s mechanical properties and biodegradation rate.\u3c/p\u3

    The effects of scaffold remnants in decellularized tissue-engineered cardiovascular constructs on the recruitment of blood cells

    No full text
    \u3cp\u3eDecellularized tissue-engineered heart valves (DTEHVs) showed remarkable results in translational animal models, leading to recellularization within hours after implantation. This is crucial to enable tissue remodeling. To investigate if the presence of scaffold remnants before implantation is responsible for the fast recellularization of DTEHVs, an in vitro mesofluidic system was used. Human granulocyte and agranulocyte fractions were isolated, stained, brought back in suspension, and implemented in the system. Three different types of biomaterials were exposed to the circulating blood cells, consisting of decellularized tissue-engineered constructs (DTECs) with or without scaffold remnants or only bare scaffold. After 5 h of testing, the granulocyte fraction depleted faster from the circulation than the agranulocyte fraction. However, only granulocytes infiltrated into the DTEC with scaffold, migrating toward the scaffold remnants. The agranulocyte population, on the other hand, was only observed on the outer surface. Active cell infiltration was associated with increased levels of matrix metalloproteinase-1 secretion in the DTEC, including scaffold remnants. Proinflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor alpha (TNFα) were significantly upregulated in the DTEC without scaffold remnants. These results indicate that scaffold remnants can influence the immune response in DTEC, being responsible for rapid cell infiltration.\u3c/p\u3

    Tissue engineering of heart valves: advances and current challenges

    No full text
    It is estimated that the number of patients requiring heart valve replacement will triple over the next five decades. None of the current replacement valves can fully restore native valve function because they lack growth and remodeling capabilities. Heart valve tissue engineering is a promising technology to overcome these limitations. Various approaches are being employed, either aimed at development of the valve substitute in vitro or at the use of the regenerative potential of the body (in situ) for the tissue culture phase. This review provides an overview of the progress within both the in vitro and in situ tissue engineering approaches for trileaflet heart valve tissue engineering. Current challenges with these approaches are discussed, focusing in particular on the use of synthetic scaffold materials
    corecore